Harvest User's Manual

Darren R. Hardy, Michael F. Schwartz, Duane Wessels, Kang-Jin Lee 2002-10-29

Harvest User's Manual was edited by Kang-Jin Lee and covers Harvest version 1.8. It was originally
written by Darren R. Hardy, Michael F. Schwartz and Duane Wessels for Harvest 1.4.pl2 in 1996-01-31.

Contents

1 Introduction to Harvest

1.1 Copyright o e

1.2 Online Harvest Resources i i i i i i e e e e e e

Subsystem Overview

2.1 Distributing the Gathering and Brokering Processes

Installing the Harvest Software
3.1 Requirements for Harvest Servers
3.1.1 Hardware
3.1.2 Platforms
3.1.3 Software e e e e
3.2 Requirements for Harvest Users it v
3.3 Retrieving and Installing the Harvest Software
3.3.1 Distribution types
3.3.2 Harvest componentso
3.3.3 User-contributed software L.
3.4 Building the Source Distribution o000,
3.5 Additional installation for the Harvest Broker
3.5.1 Checking the installation for HTTP access
3.5.2 Required modifications to your HTTP server
3.5.3 Apachehttpd L
3.5.4 Other HTTP servers 0 ittt et e e e e e e e
3.6 Upgrading versions of the Harvest software
3.6.1 Upgrading from version 1.6 toversion 1.8
3.6.2 Upgrading from version 1.5 to version 1.6
3.6.3 Upgrading from version 1.4 to version 1.5
3.6.4 Upgrading from version 1.3 to version 1.4

3.6.5 Upgrading from version 1.2 to version 1.3

3

CONTENTS

3.6.6 Upgrading from version 1.1 toversion 1.2 17
3.6.7 Upgrading to version 1.1 from version 1.0 orolder 18
3.7 Starting up the system: RunHarvest and related commands 18
3.8 Harvest team contact information oo oL 19
The Gatherer 21
4.1 OVErview e e e e e e e e e e 21
4.2 BaSiCSetup i e e e e e e e e e e e e e e e e e 21
4.2.1 Gathering News URLs with NNTP 23
4.2.2 Cleaning out a Gatherer 23
4.3 RootNode specifications Lo L 23
4.3.1 RootNodefilters 25
4.3.2 Generic Enumeration program description 0. 25
4.3.3 Example RootNode configuration 26
4.3.4 Gatherer enumeration vs. candidate selection 27
4.4 Generating LeafNode/RootNode URLs from a program 27
4.5 Extracting data for indexing: The Essence summarizing subsystem 28
4.5.1 Default actions of “stock” summarizers 29
4.5.2 Summarizing SGML data 29
4.5.3 Customizing the type recognition, candidate selection, presentation unnesting,
and summarizing steps Lo 33
4.6 Post-Summarizing: Rule-based tuning of object summaries 36
46.1 TheRulesfile 37
4.6.2 Rewriting URLs e 37
4.7 Gatherer administrationo Lo 37
4.7.1 Setting variables in the Gatherer configurationfile 37
4.7.2 Local file system gathering for reduced CPU load 39
4.7.3 Gathering from password-protected servers 40
4.7.4 Controlling access to the Gatherer’s database 40
4.7.5 Periodic gathering and realtime updates 41
476 Thelocaldiskcache 41
4.7.7 Incorporating manually generated information into a Gatherer 42
4.8 Troubleshooting e 44
The Broker 49
5.1 OVEIrVIEW . . . o o i e e e e e e e e 49
5.2 Basicsetup e e e 49

5.3 Querying a Broker 49

CONTENTS 5

5.3.1 Example queries 51
5.3.2 Regular expressions e 51
5.3.3 Query options selected by menus or buttons o000 52
5.3.4 Filtering query results oL L 52
5.3.5 Result set presentation e e 53

5.4 Customizing the Broker’s Query Result Set 53
5.4.1 The search.cf configuration file 53
5.4.2 Example search.cf customization fileo o000 55
5.4.3 Integrating your customized configuration file 57
5.4.4 Displaying SOIF attributes inresults 57

5.5 World Wide Web interface description 57
5.5.1 HTML files for graphical user interface 58
5.5.2 CGI programs 58
5.5.3 Help filesfortheuser 59

5.6 Administrating a Broker L 59
5.6.1 Deleting unwanted Broker objectso oL 61
5.6.2 Command-line Administration 62

5.7 Tuning Glimpse indexing in the Broker 62
5.7.1 The glimpseserver programot e 62

5.8 Using different index/search engines with the Broker 63
5.8.1 Using Swishasanindexer L. 63
5.8.2 Using WAISasanindexer ot i ittt i ittt 63

5.9 Collector interface description: Collection.conf 63
5.10 Troubleshooting L 64
6 Programs and layout of the installed Harvest software 67
6.1 SHARVEST HOME e et 67
6.2 S$HARVEST HOME/bin ittt 67
6.3 SHARVEST HOME/brokers 68
6.4 SHARVEST HOME/cgi-bin, 68
6.5 SHARVEST HOME/gathererso i ittt 68
6.6 SHARVEST HOME/lib 68
6.7 $HARVEST HOME/lib/broker 69
6.8 SHARVEST_ HOME/lib/gatherer 70

6.9 SHARVEST HOME/tmp ittt e 73

6 CONTENTS
7 The Summary Object Interchange Format (SOIF) 75
7.1 Formal description of SOIF 75
7.2 List of common SOIF attribute names 75

8 Gatherer Examples 79
8.1 Example 1 - A simple Gatherer oo 79
8.2 Example 2 - Incorporating manually generated information 81
8.3 Example 3 - Customizing type recognition and candidate selection 82
8.4 Example 4 - Customizing type recognition and summarizing 83
8.4.1 Using regular expressions to summarize a format 83

8.4.2 Using programs to summarize a format 84

8.4.3 Running the example Lo o 85

8.5 Example 5 - Using RootNode filters 85

9 History of Harvest 87
9.1 History of Harvest e 87
9.2 History of Harvest User’s Manual 87

Chapter 1

Introduction to Harvest

HARVEST is an integrated set of tools to gather, extract, organize, and search information across
the Internet. With modest effort users can tailor Harvest to digest information in many different
formats, and offer custom search services on the Internet.

A key goal of Harvest is to provide a flexible system that can be configured in various ways to create
many types of indexes.

Harvest also allows users to extract structured (attribute-value pair) information from many different
information formats and build indexes that allow these attributes to be referenced during queries
(e.g., searching for all documents with a certain regular expression in the title field).

An important advantage of Harvest is that it allows users to build indexes using either manually
constructed templates (for maximum control over index content) or automatically extracted data
constructed templates (for easy coverage of large collections), or using a hybrid of the two methods.

Harvest is designed to make it easy to distribute the search system on a pool of networked machines
to handle higher load.

1.1 Copyright

The core of Harvest is licensed under GPL <../../COPYING>. Additional components distributed
with Harvest are also under GPL or similar license. Glimpse, the current default fulltext indexer has a
different license. Here is a clarification of Glimpse’ copyright status <. ./glimpse-license-status>
kindly posted by Golda Velez <mailto:gvelez@tucson.com> to comp.infosystems.harvest <news:

comp.infosystems.harvest>.

1.2 Online Harvest Resources

This manual is available at harvest.sourceforge.net/harvest/doc/html/manual.html.

More information about Harvest is available at harvest.sourceforge.net.

Chapter 1. Introduction to Harvest

Chapter 2
Subsystem Overview

Harvest consists of several subsystems. The Gatherer subsystem collects indexing information (such
as keywords, author names, and titles) from the resources available at Provider sites (such as FTP
and HTTP servers). The Broker subsystem retrieves indexing information from one or more Gather-
ers, suppresses duplicate information, incrementally indexes the collected information, and provides
a WWW query interface to it.

You should start using Harvest simply, by installing a single “stock” (i.e., not customized) Gatherer
and Broker on one machine to index some of the FTP, World Wide Web, and NetNews data at your
site.

After you get the system working in this basic configuration, you can invest additional effort as
warranted. First, as you scale up to index larger volumes of information, you can reduce the
CPU and network load to index your data by distributing the gathering process. Second, you can
customize how Harvest extracts, indexes, and searches your information, to better match the types
of data you have and the ways your users would like to interact with the data.

We discuss how to distribute the gathering process in the next subsection. We cover various forms of
customization in Section 4.5.3 (Customizing the type recognition, candidate selection, presentation
unnesting, and summarizing steps) and in several parts of Section 5 (The Broker).

2.1 Distributing the Gathering and Brokering Processes

Harvest Gatherers and Brokers can be configured in various ways. Running a Gatherer remotely from
a Provider site allows Harvest to interoperate with sites that are not running Harvest Gatherers,
by using standard object retrieval protocols like FTP, Gopher, HTTP, and NNTP. However, as
suggested by the bold lines in the left side of Figure 2.1 (2), this arrangement results in excess server
and network load. Running a Gatherer locally is much more efficient, as shown in the right side
of Figure 2.1 (2). Nonetheless, running a Gatherer remotely is still better than having many sites
independently collect indexing information, since many Brokers or other search services can share
the indexing information that the Gatherer collects.

If you have a number of FTP/HTTP/Gopher /NNTP servers at your site, it is most efficient to run
a Gatherer on each machine where these servers run. On the other hand, you can reduce installation
effort by running a Gatherer at just one machine at your site and letting it retrieve data from across
the network.

Figure 2.1 (2) also illustrates that a Broker can collect information from many Gatherers (to build an
index of widely distributed information). Brokers can also retrieve information from other Brokers,

9

10 Chapter 2. Subsystem Overview

Broker

SOIF

Client s et e
Provider
Figure 2.1: Harvest Software Components
Broker Broker Broker
Gatherer Broker Broker
Provider| |Provider| |Provider Gatherer| |Gatherer| |Gatherer
on provider host on provider host on provider host

Figure 2.2: Harvest Configuration Options

2.1. Distributing the Gathering and Brokering Processes 11

in effect cascading indexed views from one another. Brokers retrieve this information using the query
interface, allowing them to filter or refine the information from one Broker to the next.

12

Chapter 2. Subsystem Overview

Chapter 3

Installing the Harvest Software

3.1 Requirements for Harvest Servers

3.1.1 Hardware

A good machine for running a typical Harvest server will have a reasonably fast processor, 1-2 GB
of free disk, and 128 MB of RAM. A slower CPU will work but it will slow down the Harvest server.
More important than CPU speed, however, is memory size. Harvest uses a number of processes, some
of which provide needed “plumbing” (e.g., search.cgi), and some of which improve performance
(e.g., the glimpseserver process). If you do not have enough memory, your system will page too
much, and drastically reduce performance. The other factor affecting RAM usage is how much data
you are trying to index in a Harvest Broker. The more data, the more disk I/O will be performed
at query time, the more RAM it will take to provide a reasonable sized disk buffer pool.

The amount of disk you’ll need depends on how much data you want to index in a single Broker. (It
is possible to distribute your index over multiple Brokers if it gets too large for one disk.) A good rule
of thumb is that you will need about 10% as much disk to hold the Gatherer and Broker databases as
the total size of the data you want to index. The actual space needs will vary depending on the type
of data you are indexing. For example, PostScript achieves a much higher indexing space reduction
than HTML, because so much of the PostScript data (such as page positioning information) is
discarded when building the index.

3.1.2 Platforms

To run a Harvest server, you need an UNIX-like Operating System.

3.1.3 Software

To use Harvest, you need the following software packages:

e All Harvest servers require: Perl v5.0 or higher.
e The Harvest Broker and Gatherer require: GNU gzip v1.2.4 or higher.
e The Harvest Broker requires: HTTP server.

13

14 Chapter 3. Installing the Harvest Software

To build Harvest from the source distribution you may need to install one or more of the following
software packages:

e Compiling Harvest requires: GNU gcc v2.5.8 or higher.

e Compiling the Harvest Broker requires: flex v2.4.7 or higher and bison v1.22 or higher.

The sources for gcc, gzip, flex, and bison are available at the GNU FTP server <ftp://ftp.gnu.
org/>.

3.2 Requirements for Harvest Users

Anyone with a web browser (e.g., Internet Explorer, Lynx, Mozilla, Netscape, Opera, etc.) can
access and use Harvest servers.

3.3 Retrieving and Installing the Harvest Software

3.3.1 Distribution types

Currently we offer only source distribution of Harvest. The source distribution contains all of the
source code for the Harvest software. There are no binary distributions of Harvest.

You can retrieve the Harvest source distributions from the Harvest download site prdown-
loads.sourceforge.net/harvest/.

3.3.2 Harvest components

Harvest components are in the components directory. To use a component, follow the instructions
included in the desired component directory.

3.3.3 TUser-contributed software

There is a collection of unsupported user-contributed software in contrib directory. If you would like
to contribute some software, please send email to lee@arco.de <mailto:lee@arco.de>.

3.4 Building the Source Distribution

The source distribution can be extracted in any directory. The following command will extract the
gnu-zipped source archive:

% gzip -dc harvest-x.y.z.tar.gz | tar xf -
For archives compressed with bzip2, use:

% bzip2 -dc harvest-x.y.z.tar.bz2 | tar xf -

3.5. Additional installation for the Harvest Broker 15

Harvest uses GNU’s autoconf package to perform needed configuration at installation time. If you
want to override the default installation location of /usr/local/harvest, change the “prefix” variable
when invoking “configure”. If desired, you may edit src/common/include/config.h before compiling
to change various Harvest compile-time limits and variables. To compile the source tree type make.

For example, to build and install the entire Harvest system into /usr/local/harvest directory, type:

% ./configure
% make
% make install

You may see some compiler warning messages, which you can ignore.

Building the entire Harvest distribution will take few minutes on a reasonably fast machine. The
compiled source tree takes approximately 25 megabytes of disk space.

Later, after the installed software working, you can remove the compiled code (“.0” files) and other
intermediate files by typing make clean. If you want to remove the configure-generated Makefiles,
type make distclean.

3.5 Additional installation for the Harvest Broker

3.5.1 Checking the installation for HTTP access

The Broker interacts with your HTTP server in a number of ways. You should make sure that the
HTTP server can properly access the files it needs. In many cases, the HTTP server will run under
a different userid than the owner of the Harvest files.

First, make sure the HTTP server userid can read the query.html files in each broker di-
rectory. Second, make sure the HTTP server userid can access and execute the CGI
programs in $HARVEST HOME/cgi-bin/. The search.cgi script reads files from the
$HARVEST HOME/cgi-bin/lib/ directory, so check that as well. Finally, check the files in $HAR-
VEST HOME/lib/. Some of the CGI Perl scripts require “include” files in this directory.

3.5.2 Required modifications to your HTTP server
The Harvest Broker requires that an HTTP server is running, and that the HTTP server “knows”

about the Broker’s files. Below are some examples of how to configure various HTTP servers to
work with the Harvest Broker.

3.5.3 Apache httpd

Requires a ScriptAlias and an Alias entry in httpd.conf, e.g.:

ScriptAlias /Harvest/cgi-bin/ Your-HARVEST_HOME/cgi-bin/
Alias /Harvest/ Your-HARVEST_HOME/

WARNING: The ScriptAlias entry must appear before the Alias entry.

Additionally, it might be necessary to configure Apache httpd to follow symbolic links. To do this,
add following to your httpd.conf:

16 Chapter 3. Installing the Harvest Software

<Directory Your-HARVEST_HOME>
Options FollowSymLinks
</Directory>

3.5.4 Other HTTP servers

Install the HTTP server and modify its configuration file so that the /Harvest directory points to
SHARVEST HOME. You will also need to configure your HTTP server so that it knows that the
directory /Harvest/cgi-bin contains valid CGI programs. If the default behaviour of your HTTP
server is not to follow symbolik links, you will need to configure it so that it will follow symbolic
links in the /Harvest directory.

3.6 Upgrading versions of the Harvest software

3.6.1 Upgrading from version 1.6 to version 1.8

You can not install version 1.8 on top of version 1.6. For example, the change from version 1.6 to
version 1.8 included some reorganization of the executables, and hence simply installing version 1.8
on top of version 1.6 would cause you to use old executables in some cases.

To upgrade from Harvest version 1.6 to 1.8, do:

1. Move your old installation to a temporary location.
2. Install the new version as directed by the release notes.

3. Then, for each Gatherer and Broker that you were running under the old installation, migrate
the server into the new installation.

Gatherers:

you need to move the Gatherer’s directory into SHARVEST HOME/qgatherers. Section
4.3 (RootNode specifications) describes the Gatherer workload specifications if you want
to modify your Gatherer’s configuration file.

Brokers:

rebuild your broker by using CreateBroker and merge in any customizations you have
made to your old Broker.

3.6.2 Upgrading from version 1.5 to version 1.6

There are no known incompatibilities between versions 1.5 and 1.6.

3.6.3 Upgrading from version 1.4 to version 1.5

You can not install version 1.5 on top of version 1.4. For example, the change from version 1.4 to
version 1.5 included some reorganization of the executables, and hence simply installing version 1.5
on top of version 1.4 would cause you to use old executables in some cases.

To upgrade from Harvest version 1.4 to 1.5, do:

1. Move your old installation to a temporary location.

3.6. Upgrading versions of the Harvest software 17

2. Install the new version as directed by the release notes.

3. Then, for each Gatherer and Broker that you were running under the old installation, migrate
the server into the new installation.

Gatherers:

you need to move the Gatherer’s directory into SHARVEST HOME/qgatherers. Section
4.3 (RootNode specifications) describes the Gatherer workload specifications if you want
to modify your Gatherer’s configuration file.

Brokers:

you need to move the Broker’s directory into $HARVEST HOME/brokers. Remove any
.glimpse_ * files from your Broker’s directory and use the admin.html interface to force
a full-index. You may want, however, to rebuild your broker by using CreateBroker so
that you can use the updated query.html and related files.

3.6.4 Upgrading from version 1.3 to version 1.4

There are no known incompatibilities between versions 1.3 and 1.4.

3.6.5 Upgrading from version 1.2 to version 1.3

Version 1.3 is mostly backwards compatible with 1.2, with the following exception:

Harvest 1.3 uses Glimpse 3.0. The .glimpse_ * files in the broker directory created with Harvest 1.2
(Glimpse 2.0) are incompatible. After installing Harvest 1.3 you should:

1. Shutdown any running brokers.

2. Execute rm .glimpse_x* in each broker directory.

3. Restart your brokers with RunBroker.

4. Force a full-index from the admin.html interface.

3.6.6 Upgrading from version 1.1 to version 1.2

There are a few incompatabilities between Harvest version 1.1 and version 1.2.

e The Gatherer has improved incremental gatherering support which is incompatible with version
1.1. To update your existing Gatherer, change into the Gatherer’s Data-Directory (usually the
data subdirectory), and run the following command:

% set path = ($HARVEST_HOME/lib/gatherer $path)
% cd data

% rm -f INDEX.gdbm

% mkindex

This should create the INDEX.gdbm and MDJ5.gdbm files in the current directory.

e The Broker has a new log format for the admin/LOG file which is incompatible with version
1.1.

18 Chapter 3. Installing the Harvest Software

3.6.7 Upgrading to version 1.1 from version 1.0 or older

If you already have an older version of Harvest installed, and want to upgrade, you can not unpack
the new distribution on top of the old one. For example, the change from version 1.0 to version 1.1
included some reorganization of the executables, and hence simply installing version 1.1 on top of
version 1.0 would cause you to use old executables in some cases.

On the other hand, you may not want to start over from scratch with a new software version, as that
would not take advantage of the data you have already gathered and indexed. Instead, to upgrade
from Harvest version 1.0 to 1.1, do the following:

1. Move your old installation to a temporary location.
2. Install the new version as directed by the release notes.

3. Then, for each Gatherer and Broker that you were running under the old installation, migrate
the server into the new installation.

Gatherers:
you need to move the Gatherer’s directory into SHARVEST HOME/gatherers. Section
4.3 (RootNode specifications) describes the new Gatherer workload specifications which
were introduced in version 1.1; you may modify your Gatherer’s configuration file to
employ this new functionality.

Brokers:

you need to move the Broker’s directory into $HARVEST HOME/brokers. You may
want, however, to rebuild your broker by using CreateBroker so that you can use the
updated query.html and related files.

3.7 Starting up the system: RunHarvest and related com-

mands

The simplest way to start the Harvest system is to use the RunHarvest command. RunHarvest
prompts the user with a short list of questions about what data to index, etc., and then creates and
runs a Gatherer and Broker with a “stock” (non-customized) set of content extraction and indexing
mechanisms. Some more primitive commands are also available, for starting individual Gatherers
and Brokers (e.g., if you want to distribute the gathering process). The Harvest startup commands

are:

RunHarvest
Checks that the Harvest software is installed correctly, prompts the user for basic configura-
tion information, and then creates and runs a Gatherer and a Broker. If you have $HAR-
VEST HOME set, then it will use it; otherwise, it tries to determine $HARVEST HOME
automatically. Found in the SHARVEST HOME directory.

RunBroker
Runs a Broker. Found in the Broker’s directory.

RunGatherer

Runs a Gatherer. Found in the Gatherer’s directory.

3.8. Harvest team contact information 19

CreateBroker

Creates a single Broker which will collect its information from other existing Brokers or Gath-
erers. Used by RunHarvest, or can be run by a user to create a new Broker. Uses $HAR-
VEST HOME, and defaults to /usr/local/harvest. Found in the $HARVEST HOME/bin
directory.

There is no CreateGatherer command, but the RunHarvest command can create a Gatherer, or
you can create a Gatherer manually (see Section 4.5.3 (Customizing the type recognition, candidate
selection, presentation unnesting, and summarizing steps) or Section 8 (Gatherer Examples)). The
layout of the installed Harvest directories and programs is discussed in Section 6 (Programs and
layout of the installed Harvest software).

Among other things, the RunHarvest command asks the user what port numbers to use when
running the Gatherer and the Broker. By default, the Gatherer will use port 8500 and the Broker
will use the Gatherer port plus 1. The choice of port numbers depends on your particular machine
— you need to choose ports that are not in use by other servers on your machine. You might look at
your /etc/services file to see what ports are in use (although this file only lists some servers; other
servers use ports without registering that information anywhere). Usually the above port numbers
will not be in use by other processes. Probably the easiest thing is simply to try using the default
port numbers, and see if it works.

The remainder of this manual provides information for users who wish to customize or otherwise
make more sophisticated use of Harvest than what happens when you install the system and run

RunHarvest.

3.8 Harvest team contact information

If you have questions the about Harvest system or problems with the software, post a note to the
USENET newsgroup comp.infosystems.harvest <news: comp.infosystems.harvest>. Please note
your machine type, operating system type, and Harvest version number in your correspondence.

If you have bug fixes, ports to new platforms or other software improvements, please email them to
the Harvest maintainer lee@arco.de <mailto:lee@arco.de>.

20

Chapter 3.

Installing the Harvest Software

Chapter 4

The Gatherer

4.1 Overview

The Gatherer retrieves information resources using a variety of standard access methods (FTP,
Gopher, HTTP, NNTP, and local files), and then summarizes those resources in various type-specific
ways to generate structured indexing information. For example, a Gatherer can retrieve a technical
report from an FTP archive, and then extract the author, title, and abstract from the paper to
summarize the technical report. Harvest Brokers or other search services can then retrieve the
indexing information from the Gatherer to use in a searchable index available via a WWW interface.

The Gatherer consists of a number of separate components. The Gatherer program reads a Gatherer
configuration file and controls the overall process of enumerating and summarizing data objects.

The structured indexing information that the Gatherer collects is represented as a list of attribute-
value pairs using the Summary Object Interchange Format (SOIF, see Section 7 (The Summary
Object Interchange Format (SOIF))). The gatherd daemon serves the Gatherer database to Brokers.
It hangs around, in the background, after a gathering session is complete. A stand-alone gather
program is a client for the gatherd server. It can be used from the command line for testing, and
is used by the Broker. The Gatherer uses a local disk cache to store objects it has retrieved. The
disk cache is described in Section 4.7.6 (The local disk cache).

Even though the gatherd daemon remains in the background, a Gatherer does not automatically
update or refresh its summary objects. Each object in a Gatherer has a Time-to-Live value. Objects
remain in the database until they expire. See Section 4.7.5 (Periodic gathering and realtime updates)
for more information on keeping Gatherer objects up to date.

Several example Gatherers are provided with the Harvest software distribution (see Section 8 (Gath-
erer Examples)).

4.2 Basic setup

To run a basic Gatherer, you need only list the Uniform Resource Locators (URLSs, see RFC1630
and RFC1738) from which it will gather indexing information. This list is specified in the Gatherer
configuration file, along with other optional information such as the Gatherer’s name and the direc-
tory in which it resides (see Section 4.7.1 (Setting variables in the Gatherer configuration file) for
details on the optional information). Below is an example Gatherer configuration file:

21

22 Chapter 4. The Gatherer

sample.cf - Sample Gatherer Configuration File

#

Gatherer-Name: My Sample Harvest Gatherer
Gatherer-Port: 8500

Top-Directory: /usr/local/harvest/gatherers/sample
<RootNodes>

Enter URLs for RootNodes here
http://wuw.mozilla.org/
http://wuw.xfree86.org/
</RootNodes>

<LeafNodes>

Enter URLs for LeafNodes here
http://wuw.arco.de/"kj/index.html
</LeafNodes>

As shown in the example configuration file, you may classify an URL as a RootNode or a LeafN-
ode. For a LeafNode URL, the Gatherer simply retrieves the URL and processes it. LeafNode URLs
are typically files like PostScript papers or compressed “tar” distributions. For a RootNode URL,
the Gatherer will expand it into zero or more LeafNode URLs by recursively enumerating it in an
access method-specific way. For FTP or Gopher, the Gatherer will perform a recursive directory
listing on the FTP or Gopher server to expand the RootNode (typically a directory name). For
HTTP, a RootNode URL is expanded by following the embedded HTML links to other URLs. For
News, the enumeration returns all the messages in the specified USENET newsgroup.

PLEASE BE CAREFUL when specifying RootNodes as it is possible to specify an enormous amount
of work with a single RootNode URL. To help prevent a misconfigured Gatherer from abusing servers
or running wildly, by default the Gatherer will only expand a RootNode into 250 LeafNodes, and
will only include HTML links that point to documents that reside on the same server as the original
RootNode URL. There are several options that allow you to change these limits and otherwise
enhance the Gatherer specification. See Section 4.3 (RootNode specifications) for details.

The Gatherer is a “robot” and collects URLs starting from the URLs specified in RootNodes. It
obeys the robots.tzt convention and the robots META tag. Tt also is HTTP Version 1.1 compliant
and sends the User-Agent and From request fields to HTTP servers for accountability.

After you have written the Gatherer configuration file, create a directory for the Gatherer and copy
the configuration file there. Then, run the Gatherer program with the configuration file as the only
command-line argument, as shown below:

% Gatherer GathName.cf

The Gatherer will generate a database of the content summaries, a log file (log.gatherer), and an error
log file (log.errors). It will also start the gatherd daemon which exports the indexing information
automatically to Brokers and other clients. To view the exported indexing information, you can use
the gather client program, as shown below:

% gather localhost 8500 | more

The -info option causes the Gatherer to respond only with the Gatherer summary information,
which consists of the attributes available in the specified Gatherer’s database, the Gatherer’s host
and name, the range of object update times, and the number of objects. Compression is the default,
but can be disabled with the -nocompress option. The optional timestamp tells the Gatherer to

4.3. RootNode specifications 23

send only the objects that have changed since the specified timestamp (in seconds since the UNIX
“epoch” of January 1, 1970).

4.2.1 Gathering News URLs with NNTP

News URLs are somewhat different than the other access protocols because the URL generally does
not contain a hostname. The Gatherer retrieves News URLs from an NNTP server. The name
of this server must be placed in the environment variable SNNTPSERVER. It is probably a good
idea to add this to your RunGatherer script. If the environment variable is not set, the Gatherer
attempts to connect to a host named news at your site.

4.2.2 Cleaning out a Gatherer

Remember the Gatherer databases persists between runs. Objects remain in the databases until
they expire. When experimenting with the gatherer, it is always a good idea to “clean out” the
databases between runs. This is most easily accomplished by executing this command from the
Gatherer directory:

% rm -rf data tmp log.*

4.3 RootNode specifications

The RootNode specification facility described in Section 4.2 (Basic setup) provides a basic set of
default enumeration actions for RootNodes. Often it is useful to enumerate beyond the default
limits, for example, to increase the enumeration limit beyond 250 URLs, or to allow site boundaries
to be crossed when enumerating HTML links. It is possible to specify these and other aspects of
enumeration, using the following syntax:

<RootNodes>
URL EnumSpec
URL EnumSpec

</RootNodes>
where EnumSpec is on a single line (using “\” to escape linefeeds), with the following syntax:

URL=URL-Max[,URL-Filter-filename] \
Host=Host-Max[,Host-Filter-filename] \
Access=TypeList \

Delay=Seconds \

Depth=Number \

Enumeration=Enumeration-Program
The EnumSpec modifiers are all optional, and have the following meanings:

URL-Max

The number specified on the right hand side of the “URL=" expression lists the maximum
number of LeafNode URLs to generate at all levels of depth, from the current URL. Note that
URL-Maz is the maximum number of URLs that are generated during the enumeration, and

24 Chapter 4. The Gatherer

not a limit on how many URLSs can pass through the candidate selection phase (see Section
4.5.3 (Customizing the candidate selection step)).

URL-Filter-filename

This is the name of a file containing a set of regular expression filters (see Section 4.3.1
(RootNode filters)) to allow or deny particular LeafNodes in the enumeration. The default
filter is SHARVEST HOME/lib/gatherer/URL-filter-default which excludes many image and
sound files.

Host-Max

The number specified on the right hand side of the “Host=" expression lists the maximum
number of hosts that will be touched during the RootNode enumeration. This enumeration
actually counts hosts by IP address so that aliased hosts are properly enumerated. Note that
this does not work correctly for multi-homed hosts, or for hosts with rotating DNS entries
(used by some sites for load balancing heavily accessed servers).

Note: Prior to Harvest Version 1.2 the “Host=...” line was called “Site=...”. We changed the
name to “Host=" because it is more intuitively meaningful (being a host count limit, not a
site count limit). For backwards compatibility with older Gatherer configuration files, we will
continue to treat “Site=" as an alias for “Host=".

Host-Filter-filename

This is the name of a file containing a set of regular expression filters to allow or deny particular
hosts in the enumeration. Each expression can specify both a host name (or IP address) and
a port number (in case you have multiple servers running on different ports of the same server
and you want to index only one). The syntax is “hostname:port”.

Access

If the RootNode is an HTTP URL, then you can specify which access methods across which to
enumerate. Valid access method types are: FILE, FTP, Gopher, HTTP, News, Telnet,
or WAIS. Use a “|” character between type names to allow multiple access methods. For
example, “Access=HTTP|FTP|Gopher” will follow HTTP, FTP, and Gopher URLs while
enumerating an HTTP RootNode URL.

Note: We do not support cross-method enumeration from Gopher, because of the difficulty of
ensuring that Gopher pointers do not cross site boundaries. For example, the Gopher URL go-
pher://powell.cs.colorado.edu:7005/1ftp3aftp. cs.washington.edufOpub/ would get an FTP di-
rectory listing of ftp.cs.washington.edu:/pub, even though the host part of the URL is pow-
ell.cs.colorado.edu.

Delay

This is the number of seconds to wait between server contacts. It defaults to one second,
when not specified otherwise. Delay=3 will let the gatherer sleep 3 seconds between server
contacts.

Depth

This is the maximum number of levels of enumeration that will be followed during gathering.
Depth=0 means that there is no limit to the depth of the enumeration. Depth=1 means
the specified URL will be retrieved, and all the URLs referenced by the specified URL will be
retrieved; and so on for higher Depth values. In other words, the enumeration will follow links
up to Depth steps away from the specified URL.

4.3. RootNode specifications 25

Enumeration-Program

This modifier adds a very flexible way to control a Gatherer. The Enumeration-Program is
a filter which reads URLs as input and writes new enumeration parameters on output. See
section 4.3.2 (Generic Enumeration program description) for specific details.

By default, URL-Max defaults to 250, URL-Filter defaults to no limit, Host-Maz defaults to 1,
Host-Filter defaults to no limit, Access defaults to HT'TP only, Delay defaults to 1 second, and
Depth defaults to zero. There is no way to specify an unlimited value for URL-Max or Host-Maz.

4.3.1 RootNode filters

Filter files use the standard UNIX regular expression syntax (as defined by the POSIX standard),
not the csh “globbing” syntax. For example, you would use “.*abc” to indicate any string ending
with “abc”, not “*abc”. A filter file has the following syntax:

Deny regex

Allow regex

The URL-Filter regular expressions are matched only on the URL-path portion of each URL (the
scheme, hostname and port are excluded). For example, the following URL-Filter file would allow
all URLSs except those containing the regular expression “ /gatherers,/”:

Deny /gatherers/
Allow .

Another common use of URL-filters is to prevent the Gatherer from travelling “up” a directory.
Automatically generated HTML pages for HIT'TP and FTP directories often contain a link for the
parent directory “..”. To keep the gatherer below a specific directory, use a URL-filter file such as:

Allow ~/my/cool/sutff/
Deny

The Host-Filter regular expressions are matched on the “hostname:port” portion of each URL.
Because the port is included, you cannot use “$” to anchor the end of a hostname. Beginning
with version 1.3, IP addresses may be specified in place of hostnames. A class B address such as
128.138.0.0 would be written as “~128\.138\..*” in regular expression syntax. For example:

Deny bcn.boulder.co.us:8080
Deny bvsd.kl2.co.us

Allow ~128\.138\..*

Deny

The order of the Allow and Deny entries is important, since the filters are applied sequentially
from first to last. So, for example, if you list “ Allow .*” first, no subsequent Deny expressions will
be used, since this Allow filter will allow all entries.

4.3.2 Generic Enumeration program description

Flexible enumeration can be achieved by giving an Enumeration=Enumeration-Program mod-
ifier to a RootNode URL. The Enumeration-Program is a filter which takes URLs on standard input
and writes new RootNode URLSs on standard output.

26 Chapter 4. The Gatherer

The output format is different than specifying a RootNode URL in a Gatherer configuration file.
Each output line must have nine fields separated by spaces. These fields are:

URL

URL-Max
URL-Filter-filename
Host-Max
Host-Filter-filename
Access

Delay

Depth

Enumeration-Program
These are the same fields as described in section 4.3 (RootNode specifications). Values must be

given for each field. Use /dev/null to disable the URL-Filter-filename and Host-Filter-filename. Use
/bin/false to disable the Enumeration-Program.

4.3.3 Example RootNode configuration

Below is an example RootNode configuration:

<RootNodes>
(1) http://harvest.cs.colorado.edu/ URL=100,MyFilter
(2) http://wwuw.cs.colorado.edu/ Host=50 Delay=60
(3) gopher://gopher. colorado.edu/ Depth=1
4) file://powell.cs.colorado.edu/home/hardy/ Depth=2

(6) ftp://ftp.cs.colorado.edu/pub/cs/techreports/ Depth=1
(6) http://harvest.cs.colorado.edu/"hardy/hotlist.html \
Depth=1 Delay=60
(7) http://harvest.cs.colorado.edu/"hardy/ \
Depth=2 Access=HTTP|FTP
</RootNodes>

Each of the above RootNodes follows a different enumeration configuration as follows:

1. This RootNode will gather up to 100 documents that pass through the URL name filters
contained within the file MyFilter.

2. This RootNode will gather the documents from up to the first 50 hosts it encounters while
enumerating the specified URL, with no limit on the Depth of link enumeration. It will also
wait for 60 seconds between each retrieval.

3. This RootNode will gather only the documents from the top-level menu of the Gopher server
at gopher.colorado.edu.

4. This RootNode will gather all documents that are in the /home/hardy directory, or that are
in any subdirectory of /home/hardy.

5. This RootNode will gather only the documents that are in the /pub/techreports directory
which, in this case, is some bibliographic files rather than the technical reports themselves.

6. This RootNode will gather all documents that are within 1 step away from the specified
RootNode URL, waiting 60 seconds between each retrieval. This is a good method by which
to index your hotlist. By putting an HTML file containing “hotlist” pointers as this RootNode,
this enumeration will gather the top-level pages to all of your hotlist pointers.

4.4. Generating LeafNode/RootNode URLs from a program 27

7. This RootNode will gather all documents that are at most 2 steps away from the specified
RootNode URL. Furthermore, it will follow and enumerate any HTTP or FTP URLs that it
encounters during enumeration.

4.3.4 Gatherer enumeration vs. candidate selection

In addition to using the URL-Filter and Host-Filter files for the RootNode specification mechanism
described in Section 4.3 (RootNode specifications), you can prevent documents from being indexed
through customizing the stoplist.cf file, described in Section 4.5.3 (Customizing the type recognition,
candidate selection, presentation unnesting, and summarizing steps). Since these mechanisms are
invoked at different times, they have different effects. The URL-Filter and Host-Filter mechanisms
are invoked by the Gatherer’s “RootNode” enumeration programs. Using these filters as stop lists
can prevent unwanted objects from being retrieved across the network. This can dramatically reduce
gathering time and network traffic.

The stoplist.cf file is used by the Essence content extraction system (described in Section 4.5 (Ex-
tracting data for indexing: The Essence summarizing subsystem)) after the objects are retrieved, to
select which objects should be content extracted and indexed. This can be useful because Essence
provides a more powerful means of rejecting indexing candidates, in which you can customize based
not only file naming conventions but also on file contents (e.g., looking at strings at the beginning
of a file or at UNIX “magic” numbers), and also by more sophisticated file-grouping schemes (e.g.,
deciding not to extract contents from object code files for which source code is available).

As an example of combining these mechanisms, suppose you want to index the “.ps” files linked
into your WWW site. You could do this by having a stoplist.cf file that contains “HTML”, and a
RootNode URL-Filter that contains:

Allow \.html
Allow \.ps
Deny .*

As a final note, independent of these customizations the Gatherer attempts to avoid retrieving objects
where possible, by using a local disk cache of objects, and by using the HTTP “If-Modified-Since”
request header. The local disk cache is described in Section 4.7.6 (The local disk cache).

4.4 Generating LeafNode/RootNode URLs from a program

It is possible to generate RootNode or LeafNode URLs automatically from program output. This
might be useful when gathering a large number of Usenet newsgroups, for example. The program is
specified inside the RootNode or LeafNode section, preceded by a pipe symbol.

<LeafNodes>
Igenerate—news—urls.sh
</LeafNodes>

The script must output valid URLs, such as

news:comp.unix.voodoo
news:rec.pets.birds
http://wuw.nlanr.net/

28 Chapter 4. The Gatherer

In the case of RootNode URLs, enumeration parameters can be given after the program.

<RootNodes>
Imy-fave-sites.pl Depth=1 URL=5000,url-filter
</RootNodes>

4.5 Extracting data for indexing: The Essence summarizing

subsystem

After the Gatherer retrieves a document, it passes the document through a subsystem called Essence
to extract indexing information. Essence allows the Gatherer to collect indexing information easily
from a wide variety of information, using different techniques depending on the type of data and the
needs of the particular corpus being indexed. In a nutshell, Essence can determine the type of data
pointed to by a URL (e.g., PostScript vs. HTML), “unravel” presentation nesting formats (such as
compressed “tar” files), select which types of data to index (e.g., don’t index Audio files), and then
apply a type-specific extraction algorithm (called a summarizer) to the data to generate a content
summary. Users can customize each of these aspects, but often this is not necessary. Harvest is
distributed with a “stock” set of type recognizers, presentation unnesters, candidate selectors, and
summarizers that work well for many applications.

Below we describe the stock summarizer set, the current components distribution, and how users
can customize summarizers to change how they operate and add summarizers for new types of data.
If you develop a summarizer that is likely to be useful to other users, please notify us via email at
lee@arco.de <mailto:lee@arco.de> so we may include it in our Harvest distribution.

Type Summarizer Function

Bibliographic Extract author and titles

Binary Extract meaningful strings and manual page summary

C, CHeader Extract procedure names, included file names, and comments
Dvi Invoke the Text summarizer on extracted ASCII text

FAQ, FullText, README

Extract all words in file

Font Extract comments

HTML Extract anchors, hypertext links, and selected fields

LaTex Parse selected LaTex fields (author, title, etc.)

Mail Extract certain header fields

Makefile Extract comments and target names

ManPage Extract synopsis, author, title, etc., based on ‘‘-man’’ macros

News Extract certain header fields

Object Extract symbol table

Patch Extract patched file names

Perl Extract procedure names and comments

PostScript Extract text in word processor-specific fashion, and pass
through Text summarizer.

RCS, SCCS Extract revision control summary

RTF Up-convert to HTML and pass through HTML summarizer

SGML Extract fields named in extraction table

ShellScript Extract comments

SourceDistribution

Extract full text of README file and comments from Makefile

and source code files, and summarize any manual pages

4.5. Extracting data for indexing: The Essence summarizing subsystem 29

SymbolicLink Extract file name, owner, and date created
TeX Invoke the Text summarizer on extracted ASCII text
Text Extract first 100 lines plus first sentence of each

remaining paragraph

[4

Troff Extract author, title, etc., based on ‘‘-man’’, ‘‘-ms’’,

‘‘-me’’ macro packages, or extract section headers and
topic sentences.

Unrecognized Extract file name, owner, and date created.

4.5.1 Default actions of “stock” summarizers

The table in Section 4.5 (Extracting data for indexing: The Essence summarizing subsystem) pro-
vides a brief reference for how documents are summarized depending on their type. These actions
can be customized, as discussed in Section 4.5.3 (Customizing the type recognition, candidate selec-
tion, presentation unnesting, and summarizing steps). Some summarizers are implemented as UNIX
programs while others are expressed as regular expressions; see Section 4.5.3 (Customizing the sum-
marizing step) or Section 8.4 (Example 4) for more information about how to write a summarizer.

4.5.2 Summarizing SGML data

It is possible to summarize documents that conform to the Standard Generalized Markup Language
(SGML), for which you have a Document Type Definition (DTD). The World Wide Web’s Hyper-
text Mark-up Language (HTML) is actually a particular application of SGML, with a corresponding
DTD. (In fact, the Harvest HTML summarizer can use the HTML DTD and our SGML summa-
rizing mechanism, which provides various advantages; see Section 4.5.2 (The SGML-based HTML
summarizer).) SGML is being used in an increasingly broad variety of applications, for example as
a format for storing data for a number of physical sciences. Because SGML allows documents to
contain a good deal of structure, Harvest can summarize SGML documents very effectively.

The SGML summarizer (SGML.sum) uses the sgmls program by James Clark to parse the SGML
document. The parser needs both a DTD for the document and a Declaration file that describes the
allowed character set. The SGML . sum program uses a table that maps SGML tags to SOIF attributes.

Location of support files

SGML support files can be found in $HARVEST HOME/lib/gatherer/sgmls-lib/. For example,
these are the default pathnames for HTML summarizing using the SGML summarizing mechanism:

$HARVEST_HOME/1lib/gatherer/sgmls-1ib/HTML/html.dtd
$HARVEST_HOME/lib/gatherer/sgmls-1ib/HTML/HTML.decl
$HARVEST_HOME/lib/gatherer/sgmls-1ib/HTML/HTML. sum.tbl

The location of the DTD file must be specified in the sgmls catalog
($HARVEST HOME/lib/gatherer/sgmls-lib/catalog). For example:

DOCTYPE HTML HTML/html.dtd

The SGML. sum program looks for the .decl file in the default location. An alternate pathname can
be specified with the -d option to SGML. sum.

The summarizer looks for the .sum.tbl file first in the Gatherer’s lib directory and then in the default
location. Both of these can be overridden with the -t option to SGML. sum.

30 Chapter 4. The Gatherer

The SGML to SOIF table

The translation table provides a simple yet powerful way to specify how an SGML document is to
be summarized. There are four ways to map SGML data into SOIF. The first two are concerned
with placing the content of an SGML tag into a SOIF attribute.

A simple SGML-to-SOIF mapping looks like this:

<TAG> soifl,so0if2,...

This places the content that occurs inside the tag “TAG” into the SOIF attributes “soif1” and “soif2”.
It is possible to select different SOIF attributes based on SGML attribute values. For example, if
“ATT” is an attribute of “TAG”, then it would be written like this:

<TAG,ATT=x> x-stuff
<TAG,ATT=y> y-stuff
<TAG> stuff

The second two mappings place values of SGML attributes into SOIF attributes. To place the value
of the “ATT” attribute of the “TAG” tag into the “att-stuff” SOIF attribute you would write:

<TAG:ATT> att-stuff

It is also possible to place the value of an SGML attribute into a SOIF attribute named by a different
SOIF attribute:

<TAG:ATT1> $ATT2

When the summarizer encounters an SGML attribute not listed in the table, the content is passed
to the parent tag and becomes a part of the parent’s content. To force the content of some tag
not to be passed up, specify the SOIF attribute as “ignore”. To force the content of some tag to
be passed to the parent in addition to being placed into a SOIF attribute, list an addition SOIF
attribute named “parent”.

Please see Section 4.5.2 (The SGML-based HTML summarizer) for examples of these mappings.

Errors and warnings from the SGML Parser

The sgmls parser can generate an overwhelming volume of error and warning messages. This will
be especially true for HTML documents found on the Internet, which often do not conform to the
stricc HTML DTD. By default, errors and warnings are redirected to /dev/null so that they do not
clutter the Gatherer’s log files. To enable logging of these messages, edit the SGML. sum Perl script
and set $syntax check = 1.

Creating a summarizer for a new SGML-tagged data type

To create an SGML summarizer for a new SGML-tagged data type with an associated DTD, you
need to do the following:

1. Write a shell script named FOO.sum which simply contains

4.5. Extracting data for indexing: The Essence summarizing subsystem 31

#!/bin/sh
exec SGML.sum F0O $x*

2. Modify the essence configuration files (as described in Section 4.5.3 (Customizing the type
recognition step)) so that your documents get typed as FOO.

3. Create the directory SHARVEST HOME/lib/qgatherer/sgmls-lib/FOO/ and
copy your DTD and Declaration there as FOO.dtd and FOO.decl. Edit
$SHARVEST HOME/lib/gatherer/sgmls-lib/catalog and add FOO.dtd to it.

4. Create the translation table FOO.sum.tbl and place it with the DTD in
SHARVEST HOME/lib/qgatherer/sgmls-lib/FOO/ .

At this point you can test everything from the command line as follows:

% F00.sum myfile.foo

The SGML-based HTML summarizer

Harvest can summarize HTML using the generic SGML summarizer described in Section 4.5.2 (Sum-
marizing SGML data). The advantage of this approach is that the summarizer is more easily cus-
tomizable, and fits with the well-conceived SGML model (where you define DTDs for individual doc-
ument types and build interpretation software to understand DTDs rather than individual document
types). The downside is that the summarizer is now pickier about syntax, and many Web documents
are not syntactically correct. Because of this pickiness, the default is for the HTML summarizer to
run with syntax checking outputs disabled. If your documents are so badly formed that they confuse
the parser, this may mean the summarizing process dies unceremoniously. If you find that some of
your HTML documents do not get summarized or only get summarized in part, you can turn syntax-
checking output on by setting $syntax check = 1 in $HARVEST_HOME/lib/gatherer/SGML.sum.
That will allow you to see which documents are invalid and where.

Note that part of the reason for this problem is that Web browsers do not insist on well-formed
documents. So, users can easily create documents that are not completely valid, yet display fine.

Below is the default SGML-to-SOIF table used by the HTML summarizer:

HTML ELEMENT SOIF ATTRIBUTES

<A> keywords,parent
<A:HREF> url-references
<ADDRESS> address

 keywords,parent
<BODY> body

<CITE> references
<CODE> ignore

 keywords ,parent
<H1> headings

<H2> headings

<H3> headings

<H4> headings

<H5> headings

<H6> headings

<HEAD> head

32 Chapter 4. The Gatherer

<I> keywords,parent
<IMG:SRC> images
<META:CONTENT> $NAME
 keywords,parent
<TITLE> title
<TT> keywords ,parent
 keywords,parent

The pathname to this file is SHARVEST _HOME/lib/gatherer/sgmls-lib/HTML/HTML.suwm.tbl.

Individual Gatherers may do customized HTML summarizing by placing a modified version of this
file in the Gatherer lib directory. Another way to customize is to modify the HTML. sum script and
add a -t option to the SGML.sum command. For example:

SGML.sum -t $HARVEST_HOME/lib/my-HTML.table HTML $*
In HTML, the document title is written as:
<TITLE>My Home Page</TITLE>
The above translation table will place this in the SOIF summary as:
title{13}: My Home Page

Note that “keywords,parent” occurs frequently in the table. For any specially marked text (bold,
emphasized, hypertext links, etc.), the words will be copied into the keywords attribute and also
left in the content of the parent element. This keeps the body of the text readable by not removing
certain words.

Any text that appears inside a pair of CODE tags will not show up in the summary because we
specified “ignore” as the SOIF attribute.

URLs in HTML anchors are written as:

The specification for <A:HREF > in the above translation table causes this to appear as:

url-references{32}: http://harvest.cs.colorado.edu/

Adding META data to your HTML

One of the most useful HTML tags is META. This allows the document writer to include arbitrary
metadata in an HTML document. A Typical usage of the META element is:

<META NAME="author" CONTENT="Joe T. Slacker">

By specifying “<META:CONTENT> $NAME” in the translation table, this comes out as:
author{15}: Joe T. Slacker

Using the META tags, HTML authors can easily add a list of keywords to their documents:

<META NAME="keywords" CONTENT="wordl word2">
<META NAME="keywords" CONTENT="word3 word4">

4.5. Extracting data for indexing: The Essence summarizing subsystem 33

Other examples

A very terse HTML summarizer could be specified with a table that only puts emphasized words
into the keywords attribute:

HTML ELEMENT SOIF ATTRIBUTES

<A> keywords
 keywords
 keywords
<H1> keywords
<H2> keywords
<H3> keywords
<I> keywords
<META:CONTENT> $NAME
 keywords
<TITLE> title,keywords
<TT> keywords

Conversely, a full-text summarizer can be easily specified with only:

HTML ELEMENT SOIF ATTRIBUTES

<HTML> full-text
<TITLE> title,parent

4.5.3 Customizing the type recognition, candidate selection, presentation
unnesting, and summarizing steps

The Harvest Gatherer’s actions are defined by a set of configuration and utility files, and a corre-
sponding set of executable programs referenced by some of the configuration files.

If you want to customize a Gatherer, you should create bin and lib subdirectories in the direc-
tory where you are running the Gatherer, and then copy $HARVEST HOME/lib/gatherer/*.cf
and $HARVEST HOME/lib/qgatherer/magic into your lib directory. Then add to your Gatherer
configuration file:

Lib-Directory: 1ib

The details about what each of these files does are described below. The basic contents of a typical
Gatherer’s directory is as follows (note: some of the file names below can be changed by setting
variables in the Gatherer configuration file, as described in Section 4.7.1 (Setting variables in the
Gatherer configuration file)):

RunGatherd* bin/ GathName.cf log.errors tmp/
RunGatherer* data/ lib/ log.gatherer
bin:

MyNewType.sum*

data:
All-Templates.gz INFO.soif PRODUCTION.gdbm gatherd.log
INDEX.gdbm MD5.gdbm gatherd.cf

34 Chapter 4. The Gatherer

lib:
bycontent.cf byurl.cf quick-sum.cf
byname.cf magic stoplist.cf
tmp:

The RunGatherd and RunGatherer are used to export the Gatherer’s database after a machine reboot
and to run the Gatherer, respectively. The log.errors and log.gatherer files contain error messages
and the output of the Essence typing step, respectively (Essence will be described shortly). The
GathName.cf file is the Gatherer’s configuration file.

The bin directory contains any summarizers and any other program needed by the summarizers. If
you were to customize the Gatherer by adding a summarizer, you would place those programs in
this bin directory; the MyNewType.sum is an example.

The data directory contains the Gatherer’s database which gatherd exports. The Gatherer’s
database consists of the All-Templates.gz, INDEX.gdbm, INFO.soif, MD5.gdbm and PRODUC-
TION.gdbm files. The gatherd.cf file is used to support access control as described in Section 4.7.4
(Controlling access to the Gatherer’s database). The gatherd.log file is where the gatherd program
logs its information.

The lib directory contains the configuration files used by the Gatherer’s subsystems, namely Essence.
These files are described briefly in the following table:

bycontent.cf Content parsing heuristics for type recognition step

byname.cf File naming heuristics for type recognition step

byurl.cf URL naming heuristics for type recognition step

magic UNIX ‘‘file’’ command specifications (matched against
bycontent.cf strings)

quick-sum.cf Extracts attributes for summarizing step.

stoplist.cf File types to reject during candidate selection

Customizing the type recognition step

Essence recognizes types in three ways (in order of precedence): by URL naming heuristics, by file
naming heuristics, and by locating identifying data within a file using the UNIX file command.

To modify the type recognition step, edit lib/byname.cf to add file naming heuristics, or lib/byurl.cf
to add URL naming heuristics, or lib/bycontent.cf to add by-content heuristics. The by-content
heuristics match the output of the UNIX file command, so you may also need to edit the lib/magic
file. See Section 8.3 (Example 3) and 8.4 (Example 4) for detailed examples on how to customize
the type recognition step.

Customizing the candidate selection step

The lib/stoplist.cf configuration file contains a list of types that are rejected by Essence. You can
add or delete types from lib/stoplist.cf to control the candidate selection step.

To direct Essence to index only certain types, you can list the types to index in lib/allowlist.cf .
Then, supply Essence with the —allowlist flag.

The file and URL naming heuristics used by the type recognition step (described in Section 4.5.3
(Customizing the type recognition step)) are particularly useful for candidate selection when gath-
ering remote data. They allow the Gatherer to avoid retrieving files that you don’t want to index

4.5. Extracting data for indexing: The Essence summarizing subsystem 35

(in contrast, recognizing types by locating identifying data within a file requires that the file be
retrieved first). This approach can save quite a bit of network traffic, particularly when used in
combination with enumerated RootNode URLs. For example, many sites provide each of their files
in both a compressed and uncompressed form. By building a lib/allowlist.cf containing only the
Compressed types, you can avoid retrieving the uncompressed versions of the files.

Customizing the presentation unnesting step

Some types are declared as “nested” types. Essence treats these differently than other types, by
running a presentation unnesting algorithm or “Exploder” on the data rather than a Summarizer.
At present Essence can handle files nested in the following formats:

1. binhex

2. uuencode

3. shell archive (“shar”)

4. tape archive (“tar”)

5. bzip2 compressed (“bzip2”)
6. compressed

7. GNU compressed (“gzip”)

8. zip compressed archive

To customize the presentation unnesting step you can modify the Essence source file
src/gatherer/essence/unnest.c. This file lists the available presentation encodings, and also specifies
the unnesting algorithm. Typically, an external program is used to unravel a file into one or more
component files (e.g. bzip2, gunzip, uudecode, and tar).

An Exploder may also be used to explode a file into a stream of SOIF objects. An Exploder program
takes a URL as its first command-line argument and a file containing the data to use as its second,
and then generates one or more SOIF objects as output. For your convenience, the FEzploder type
is already defined as a nested type. To save some time, you can use this type and its corresponding
Exploder.unnest program rather than modifying the Essence code.

See Section 8.2 (Example 2) for a detailed example on writing an Exploder. The unnest.c file also
contains further information on defining the unnesting algorithms.

Customizing the summarizing step

Essence supports two mechanisms for defining the type-specific extraction algorithms (called Sum-
marizers) that generate content summaries: a UNIX program that takes as its only command line
argument the filename of the data to summarize, and line-based regular expressions specified in
lib/quick-sum.cf. See Section 8.4 (Example 4) for detailed examples on how to define both types of
Summarizers.

The UNIX Summarizers are named using the convention TypeName.sum (e.g., PostScript.sum).
These Summarizers output their content summary in a SOIF attribute-value list (see Section 7 (The
Summary Object Interchange Format (SOIF))). You can use the wrapit command to wrap raw
output into the SOIF format (i.e., to provide byte-count delimiters on the individual attribute-value
pairs).

36 Chapter 4. The Gatherer

There is a summarizer called FullText . sum that you can use to perform full text indexing of selected
file types, by simply setting up the lib/bycontent.cf and lib/byname.cf configuration files to recognize
the desired file types as FullText (i.e., using “FullText” in column 1 next to the matching regular
expression).

4.6 Post-Summarizing: Rule-based tuning of object sum-
maries

It is possible to “fine-tune” the summary information generated by the Essence summarizers. A

typical application of this would be to change the Time-to-Live attribute based on some knowledge

about the objects. So an administrator could use the post-summarizing feature to give quickly-
changing objects a lower TTL, and very stable documents a higher TTL.

Objects are selected for post-summarizing if they meet a specified condition. A condition consists
of three parts: An attribute name, an operation, and some string data. For example:

city == ’New York’

In this case we are checking if the city attribute is equal to the string ‘New York’. For exact string
matching, the string data must be enclosed in single quotes. Regular expressions are also supported:

city ~ /New York/
Negative operators are also supported:

city != ’New York’
city !~ /New York/

Conditions can be joined with ‘& &’ (logical and) or ‘||’ (logical or) operators:
city == ’New York’ && state != ’NY’;

When all conditions are met for an object, some number of instructions are executed on it. There
are four types of instructions which can be specified:

1. Set an attribute exactly to some specific string.

Example:

time-to-live = "86400"

2. Filter an attribute through some program. The attribute value is given as input to the filter.
The output of the filter becomes the new attribute value.

Example:

keywords | tr A-Z a-z

3. Filter multiple attributes through some program. In this case the filter must read and write
attributes in the SOIF format.

Example:

4.7. Gatherer administration 37

address,city,state,zip ! cleanup-address.pl

4. A special case instruction is to delete an object. To do this, simply write:

delete()

4.6.1 The Rules file

The conditions and instructions are combined together in a “rules” file. The format of this file is
somewhat similar to a Makefile; conditions begin in the first column and instructions are indented
by a tab-stop.

Example:

type == ’HTML’
partial-text | cleanup-html-text.pl

URL ~ /users/
time-to-live

"86400"

partial-text ! extract-owner.sh

type == ’S0IFStream’
delete()

This rules file is specified in the gatherer.cf file with the Post-Summarizing tag, e.g.:

Post-Summarizing: 1ib/myru1es

4.6.2 Rewriting URLs

Until version 1.4 it was not possible to rewrite the URL-part of an object summary. It is now
possible, but only by using the “pipe” instruction. This may be useful for people wanting to run
a Gatherer on file:// URLs, but have them appear as http:// URLs. This can be done with a
post-summarizing rule such as:

url ~ ’file://localhost/web/htdocs/’
url | fix-url.pl

And the ’fix-url.pl’ script might look like:

#!/usr/local/bin/perl -p
s’file://localhost/web/htdocs/’http://www.my.domain/’;

4.7 Gatherer administration

4.7.1 Setting variables in the Gatherer configuration file

In addition to customizing the steps described in Section 4.5.3 (Customizing the type recognition,
candidate selection, presentation unnesting, and summarizing steps), you can customize the Gatherer

38 Chapter 4. The Gatherer

by setting variables in the Gatherer configuration file. This file consists of two parts: a list of variables
that specify information about the Gatherer (such as its name, host, and port number), and two lists
of URLs (divided into RootNodes and LeafNodes) from which to collect indexing information.
Section 4.2 (Basic setup) shows an example Gatherer configuration file. In this section we focus on
the variables that the user can set in the first part of the Gatherer configuration file.

Each variable name starts in the first column, ends with a colon, then is followed by the value. The

following table shows the supported variables:

Access-Delay:
Data-Directory:
Debug-Options:
Errorlog-File:
Essence-Options:
FTP-Auth:
Gatherd-Inetd:
Gatherer-Host:

Gatherer-Name:

Gatherer-Options:

Gatherer-Port:

Gatherer-Version:

HTTP-Basic-Auth:
HTTP-Proxy:
Keep-Cache:
Lib-Directory:
Local-Mapping:
Log-File:

Post-Summarizing:

Refresh-Rate:
Time-To-Live:

Top-Directory:

Default delay between URLs accesses.

Directory where GDBM database is written.
Debugging options passed to child programs.
File for logging errors.

Any extra options to pass to Essence.
Username/password for protected FTP documents.
Denotes that gatherd is run from inetd.

Full hostname where the Gatherer is run.

A Unique name for the Gatherer.

Extra options for the Gatherer.

Port number for gatherd.

Version string for the Gatherer.
Username/password for protected HTTP documents.
host:port of your HTTP proxy.

‘‘yes’’ to not remove local disk cache.
Directory where configuration files live.
Mapping information for local gathering.

File for logging progress.

A rules-file for post-summarizing.

Object refresh-rate in seconds, default 1 week.
Object time-to-live in seconds, default 1 month.

Top-level directory for the Gatherer.

Working-Directory: Directory for tmp files and local disk cache.

Notes:
e We recommend that you use the Top-Directory variable, since it will set the Data-

Directory, Lib-Directory, and Working-Directory variables.

e Both Working-Directory and Data-Directory will have files in them after the Gatherer
has run. The Working-Directory will hold the local-disk cache that the Gatherer uses to
reduce network I/0, and the Data-Directory will hold the GDBM databases that contain
the content summaries.

e You should use full rather than relative pathnames.
e All variable definitions must come before the RootNode or LeafNode URLs.
e Any line that starts with a “#” is a comment.

e Local-Mapping is discussed in Section 4.7.2 (Local file system gathering for reduced CPU
load).

e HTTP-Proxy will retrieve HTTP URLSs via a proxy host. The syntax is hostname:port;
for example, proxy.yoursite.com:3128.

e Essence-Options is particularly useful, as it lets you customize basic aspects of the Gatherer
easily.

4.7. Gatherer administration 39

e The only valid Gatherer-Options is —save-space which directs the Gatherer to be more
space efficient when preparing its database for export.

e The Gatherer program will accept the -background flag which will cause the Gatherer to
run in the background.

The Essence options are:

Option Meaning

--allowlist filename File with list of types to allow

--fake-mdbs Generates MD5s for SOIF objects from a .unnest program
--fast-summarizing Trade speed for some consistency. Use only when

an external summarizer is known to generate clean,
unique attributes.

--full-text Use entire file instead of summarizing. Alternatively,
you can perform full text indexing of individual file
types by using the FullText.sum summarizer.

--max-deletions n Number of GDBM deletions before reorganization

--minimal-bookkeeping Generates a minimal amount of bookkeeping attrs

--no-access Do not read contents of objects
--no-keywords Do not automatically generate keywords
--stoplist filename File with list of types to remove
--type-only Only type data; do not summarize objects

A particular note about full text summarizing: Using the Essence —full-text option causes files
not to be passed through the Essence content extraction mechanism. Instead, their entire content is
included in the SOIF summary stream. In some cases this may produce unwanted results (e.g., it will
directly include the PostScript for a document rather than first passing the data through a PostScript
to text extractor, providing few searchable terms and large SOIF objects). Using the individual file
type summarizing mechanism described in Section 4.5.3 (Customizing the summarizing step) will
work better in this regard, but will require you to specify how data are extracted for each individual
file type. In a future version of Harvest we will change the Essence —full-text option to perform
content extraction before including the full text of documents.

4.7.2 Local file system gathering for reduced CPU load

Although the Gatherer’s work load is specified using URLs, often the files being gathered are located
on alocal file system. In this case it is much more efficient to gather directly from the local file system
than via FTP/Gopher/HTTP /News, primarily because of all the UNIX forking required to gather
information via these network processes. For example, our measurements indicate it causes from 4-
7x more CPU load to gather from FTP than directly from the local file system. For large collections
(e.g., archive sites containing many thousands of files), the CPU savings can be considerable.

Starting with Harvest Version 1.1, it is possible to tell the Gatherer how to translate URLs to local
file system names, using the Local-Mapping Gatherer configuration file variable (see Section 4.7.1
(Setting variables in the Gatherer configuration file)). The syntax is:

Local-Mapping: URL_prefix local_path_prefix

This causes all URLs starting with URL _ prefix to be translated to files starting with the prefix
local path prefix while gathering, but to be left as URLSs in the results of queries (so the objects

40 Chapter 4. The Gatherer

can be retrieved as usual). Note that no regular expressions are supported here. As an example, the
specification

Local-Mapping: http://harvest.cs.colorado.edu/ hardy/ /homes/hardy/public_html/
Local-Mapping: ftp://ftp.cs.colorado.edu/pub/cs/ /cs/ftp/

would cause the URL http://harvest.cs.colorado.edu/ hardy/Home.html to be trans-
lated to the local file name /homes/hardy/public_html/Home.html, while the URL
ftp://ftp.cs.colorado.edu/pub/cs/techreports/schwartz/Harvest. Conf.ps.Z would be translated
to the local file name /cs/ftp/techreports/schwartz/Harvest. Conf.ps.Z.

Local gathering will work over NFS file systems. A local mapping will fail if: the local file cannot
be opened for reading; or the local file is not a regular file; or the local file has execute bits set. So,
for directories, symbolic links and CGI scripts, the server is always contacted rather than the local
file system. Lastly, the Gatherer does not perform any URL syntax translations for local mappings.
If your URL has characters that should be escaped (as in RF(C1738), then the local mapping will
fail. Starting with version 1.4 patchlevel 2 Essence will print [L] after URLs which were successfully
accessed locally.

Note that if your network is highly congested, it may actually be faster to gather via
HTTP/FTP/Gopher than via NFS, because NFS becomes very inefficient in highly congested situ-
ations. Even better would be to run local Gatherers on the hosts where the disks reside, and access
them directly via the local file system.

4.7.3 Gathering from password-protected servers

You can gather password-protected documents from HTTP and FTP servers. In both cases, you
can specify a username and password as a part of the URL. The format is as follows:

ftp://user:password@host:port/url-path
http://user:password@host:port/url-path

With this format, the “user:password” part is kept as a part of the URL string all throughout Harvest.

This may enable anyone who uses your Broker(s) to access password-protected documents.

You can keep the username and password information “hidden” by specifying the authentication

information in the Gatherer configuration file. For HTTP, the format is as follows:
HTTP-Basic-Auth: realm username password

where realm is the same as the AuthName parameter given in an Apache httpd httpd.conf or

.htaccess file. In other httpd server configuration, the realm value is sometimes called Serverld.

For FTP, the format in the gatherer.cf file is

FTP-Auth: hostname[:port] username password

4.7.4 Controlling access to the Gatherer’s database

You can use the gatherd.cf file (placed in the Data-Directory of a Gatherer) to control access
to the Gatherer’s database. A line that begins with Allow is followed by any number of domain
or host names that are allowed to connect to the Gatherer. If the word all is used, then all hosts
are matched. Deny is the opposite of Allow. The following example will only allow hosts in the
cs.colorado.edu or usc.edu domain access the Gatherer’s database:

4.7. Gatherer administration 41

Allow <cs.colorado.edu usc.edu

Deny all

4.7.5 Periodic gathering and realtime updates

The Gatherer program does not automatically do any periodic updates — when you run it, it
processes the specified URLs, starts up a gatherd daemon (if one isn’t already running), and then
exits. If you want to update the data periodically (e.g., to capture new files as they are added to
an FTP archive), you need to use the UNIX cron command to run the Gatherer program at some
regular interval.

To set up periodic gathering via cron, use the RunGatherer command that RunHarvest will create.
An example RunGatherer script follows:

#!/bin/sh

#

RunGatherer - Runs the ATT 800 Gatherer (from cron)

#

HARVEST_HOME=/usr/local/harvest; export HARVEST_HOME
PATH=${HARVEST_HOME}/bin:${HARVEST_HOME}/lib/gatherer:${HARVEST_HOME}/1lib:$PATH
export PATH

NNTPSERVER=1localhost; export NNTPSERVER

cd /usr/local/harvest/gatherers/att800

exec Gatherer "att800.cf"

You should run the RunGatherd command from your system startup (e.g. /etc/rc.local) file, so the
Gatherer’s database is exported each time the machine reboots. An example RunGatherd script
follows:

#!/bin/sh

#

RunGatherd - starts up the gatherd process (from /etc/rc.local)

#

HARVEST_HOME=/usr/local/harvest; export HARVEST_HOME
PATH=${HARVEST_HOME}/lib/gatherer: ${HARVEST_HOME}/bin:$PATH; export PATH
exec gatherd -d /usr/local/harvest/gatherers/att800/data 8500

4.7.6 The local disk cache

The Gatherer maintains a local disk cache of files it gathers to reduce network traffic from restarting
aborted gathering attempts. However, since the remote server must still be contacted whenever
Gatherer runs, please do not set your cron job to run Gatherer frequently. A typical value might
be weekly or monthly, depending on how congested the network and how important it is to have the
most current data.

By default, the Gatherer’s local disk cache is deleted after each successful completion. To save the
local disk cache between Gatherer sessions, define Keep-Cache: yes in your Gatherer configuration
file (Section 4.7.1 (Setting variables in the Gatherer configuration file)).

If you want your Broker’s index to reflect new data, then you must run the Gatherer and run a
Broker collection. By default, a Broker will perform collections once a day. If you want the Broker
to collect data as soon as it’s gathered, then you will need to coordinate the timing of the completion
of the Gatherer and the Broker collections.

42 Chapter 4. The Gatherer

If you run your Gatherer frequently and you use the Keep-Cache: yes in your Gatherer configu-
ration file, then the Gatherer’s local disk cache may interfere with retrieving updates. By default,
objects in the local disk cache expire after 7 days; however, you can expire objects more quickly by
setting the SGATHERER CACHE _TTL environment variable to the number of seconds for
the Time-To-Live (TTL) before you run the Gatherer, or you can change RunGatherer to remove
the Gatherer’s tmp directory after each Gatherer run. For example, to expire objects in the local
disk cache after one day:

% setenv GATHERER_CACHE_TTL 86400 # one day
% ./RunGatherer

The Gatherer’s local disk cache size defaults to 32 MBs, but you can change this value by setting
the SHARVEST MAX LOCAL_CACHE environment variable to the number of MBs before
you run the Gatherer. For example, to have a maximum cache of 10 MB you can do as follows:

% setenv HARVEST_MAX_LOCAL_CACHE 10 # 10 MB
% ./RunGatherer

If you have access to the software that creates the files that you are indexing (e.g., if all updates are
funneled through a particular editor, update script, or system call), you can modify this software to
schedule realtime Gatherer updates whenever a file is created or updated. For example, if all users
update the files being indexed using a particular program, this program could be modified to run
the Gatherer upon completion of the user’s update.

Note that, when used in conjunction with cron, the Gatherer provides a powerful data “mirroring”
facility. You can use the Gatherer to replicate the contents of one or more sites, retrieve data in
multiple formats via multiple protocols (FTP, HTTP, etc.), optionally perform a variety of type- or
site-specific transformations on the data, and serve the results very efficiently as compressed SOIF
object summary streams to other sites that wish to use the data for building indexes or for other
purposes.

4.7.7 Incorporating manually generated information into a Gatherer

You may want to inspect the quality of the automatically-generated SOIF templates. In general,
Essence’s techniques for automatic information extraction produce imperfect results. Sometimes
it is possible to customize the summarizers to better suit the particular context (see Section 4.5.3
(Customizing the summarizing step)). Sometimes, however, it makes sense to augment or change
the automatically generated keywords with manually entered information. For example, you may
want to add Title attributes to the content summaries for a set of PostScript documents (since it’s
difficult to parse them out of PostScript automatically).

Harvest provides some programs that automatically clean up a Gatherer’s database. The rmbinary
program removes any binary data from the templates. The cleandb program does some simple
validation of SOIF objects, and when given the -truncate flag it will truncate the Keywords data
field to 8 kilobytes. To help in manually managing the Gatherer’s databases, the gdbmutil GDBM
database management tool is provided in $HARVEST HOME/lib/gatherer.

In a future release of Harvest we will provide a forms-based mechanism to make it easy to provide
manual annotations. In the meantime, you can annotate the Gatherer’s database with manually
generated information by using the mktemplate, template2db, mergedb, and mkindex programs.
You first need to create a file (called, say, annotations) in the following format:

4.7. Gatherer administration 43

Q@FILE { urlil

Attribute-Name-1: DATA
Attribute-Name-2: DATA
Attribute-Name-n: DATA
}

QFILE { url2

Attribute-Name-1: DATA
Attribute-Name-2: DATA
Attribute-Name-n: DATA
}

Note that the Attributes must begin in column 0 and have one tab after the colon, and the DATA
must be on a single line.

Next, run the mktemplate and template2db programs to generate SOIF and then GDBM versions
of these data (you can have several files containing the annotations, and generate a single GDBM
database from the above commands):

% set path = ($HARVEST_HOME/lib/gatherer $path)
% mktemplate annotations [annotations2 ...] | template2db annotations.gdbm

Finally, you run mergedb to incorporate the annotations into the automatically generated data, and
mkindex to generate an index for it. The usage line for mergedb is:

mergedb production automatic manual [manual ...]

The idea is that production is the final GDBM database that the Gatherer will serve. This is a new
database that will be generated from the other databases on the command line. automatic is the
GDBM database that a Gatherer automatically generated in a previous run (e.g., WORKING.gdbm
or a previous PRODUCTION.gdbm). manual and so on are the GDBM databases that you manually
created. When mergedb runs, it builds the production database by first copying the templates from
the manual databases, and then merging in the attributes from the automatic database. In case
of a conflict (the same attribute with different values in the manual and eutomatic databases), the
manual values override the automatic values.

By keeping the automatically and manually generated data stored separately, you can avoid losing
the manual updates when doing periodic automatic gathering. To do this, you will need to set up a
script to remerge the manual annotations with the automatically gathered data after each gathering.

An example use of mergedb is:
% mergedb PRODUCTION.new PRODUCTION.gdbm annotations.gdbm

% mv PRODUCTION.new PRODUCTION.gdbm
% mkindex

If the manual database looked like this:
Q@FILE { urli

my-manual-attribute: this is a neat attribute

}

44

Chapter 4. The Gatherer

and the automatic database looked like this:

QFILE { urli

keywords: boulder colorado

file-size: 1034

md5: ¢c3d79dc037e£fd538ce50464089af2fb6

}

then in the end, the production database will look like this:

QFILE { urli

my-manual-attribute:

keywords: boulder colorado

file-size: 1034

this is a neat attribute

md5: c3d79dc037efd538ceb50464089af2fb6

}

4.8 Troubleshooting

Debugging

Extra information from specific programs and library routines can be logged by setting debug-

ging flags. A debugging flag has the form -Dsection,level. Section is an integer in the range

1-255, and level is an integer in the range 1-9. Debugging flags can be given on a command line,

with the Debug-Options: tag in a gatherer configuration file, or by setting the environment

variable SHARVEST DEBUG.

Examples:

Debug-Options: -D68,5 -D44,1

% httpenum -D20,1 -D21,1 -D42,1 http://harvest.cs.colorado.edu/

% setenv HARVEST_DEBUG ’-D20,1 -D23,1 -D63,1°

Debugging sections and levels have been assigned to the following sections of the code:

section 20, level
section 21, level
section 22, level
section 23, level
section 24, level
section 25, level
section 26, level
section 40, level

section 41, level

1,
1,
1,
1
1
1
1
1,
1
section 42, level 1,
section 43, level 1,
section 44, level 1,
section 45, level 1
section 46, level 1
section 48, level 1,
section 60, level 1
section 61, level 1
section 62, level 1
section 63, level 1
1

section 64, level

5:
5:
5

9
9

Common liburl URL processing

Common liburl HTTP routines

Common liburl disk cache routines

Common liburl FTP routines

Common liburl Gopher routines

urlget -
ftpget -
Gatherer
Gatherer
Gatherer
Gatherer
Gatherer
Gatherer
Gatherer
Gatherer
Gatherer
Gatherer
Gatherer
Gatherer

Gatherer

standalone liburl program.

standalone liburl program.

URL enumeration

enumeration URL verification

enumeration for HTTP

enumeration for Gopher

enumeration filter routines

enumeration for FTP

enumeration for file:// URLs

enumeration robots.txt stuff

essence

essence

essence

essence

essence

data object processing
database routines

main

type recognition

object summarizing

4.8. Troubleshooting 45

section 65, level 1 Gatherer essence object unnesting
section 66, level 1, 2, 5 Gatherer essence post-summarizing
section 67, level 1 Gatherer essence object-ID code
section 69, level 1, 5, 9 Common SOIF template processing
section 70, level 1, 5, 9 Broker registry

section 71, level 1 Broker collection routines

section 72, level 1 Broker SOIF parsing routines
section 73, level 1, 5, 9 Broker registry hash tables
section 74, level 1 Broker storage manager routines
section 75, level 1, 5 Broker query manager routines
section 75, level 4 Broker query_list debugging
section 76, level 1 Broker event management routines
section 77, level 1 Broker main

section 78, level 9 Broker select(2) loop

section 79, level 1, 5, 9 Broker gatherer-id management
section 80, level 1 Common utilities memory management
section 81, level 1 Common utilities buffer routines
section 82, level 1 Common utilities system(S) routines
section 83, level 1 Common utilities pathname routines
section 84, level 1 Common utilities hostname processing
section 85, level 1 Common utilities string processing
section 86, level 1 Common utilities DNS host cache
section 101, level 1 Broker PLWeb indexing engine
section 102, level 1, 2, 5 Broker Glimpse indexing engine
section 103, level 1 Broker Swish indexing engine

Symptom
The Gatherer doesn’t pick up all the objects pointed to by some of my RootNodes.

Solution
The Gatherer places various limits on enumeration to prevent a misconfigured Gatherer from
abusing servers or running wildly. See section 4.3 (RootNode specifications) for details on how
to override these limits.

Symptom
Local-Mapping did not work for me - it retrieved the objects via the usual remote access
protocols.

Solution

A local mapping will fail if:

e the local filename cannot be opened for reading; or,
e the local filename is not a regular file; or,

e the local filename has execute bits set.

So for directories, symbolic links, and CGI scripts, the HTTP server is always contacted.
We don’t perform URL translation for local mappings. If your URL’s have funny characters
that must be escaped, then the local mapping will also fail. Add debug option -D20,1 to
understand how local mappings are taking place.

Symptom

Using the —full-text option I see a lot of raw data in the content summaries, with few keywords
I can search.

46 Chapter 4. The Gatherer

Solution

At present —full-text simply includes the full data content in the SOIF summaries. Using
the individual file type summarizing mechanism described in Section 4.5.3 (Customizing the
summarizing step) will work better in this regard, but will require you to specify how data are
extracted for each individual file type. In a future version of Harvest we will change the Essence
—full-text option to perform content extraction before including the full text of documents.

Symptom

No indexing terms are being generated in the SOIF summary for the META tags in my HTML
documents.

Solution

This probably indicates that your HTML is not syntactically well-formed, and hence the
SGML-based HTML summarizer is not able to recognize it. See Section 4.5.2 (Summariz-
ing SGML data) for details and debugging options.

Symptom
Gathered data are not being updated.

Solution

The Gatherer does not automatically do periodic updates. See Section 4.7.5 (Periodic gathering
and realtime updates) for details.

Symptom
The Gatherer puts slightly different URLs in the SOIF summaries than I specified in the
Gatherer configuration file.

Solution

This happens because the Gatherer attempts to put URLSs into a canonical format. It does
this by removing default port numbers and similar cosmetic changes. Also, by default, Essence
(the content extraction subsystem within the Gatherer) removes the standard stoplist.cf types,
which includes HTTP-Query (the cgi-bin stuff).

Symptom

There are no Last-Modification-Time or MD§ attributes in my gatherered SOIF data, so the
Broker can’t do duplicate elimination.

Solution

If you gather remote, manually-created information, it is pulled into Harvest using “exploders”
that translate from the remote format into SOIF. That means they don’t have a direct way
to fill in the Last-Modification-Time or MD5 information per record. Note also that this will
mean one update to the remote records would cause all records to look updated, which will
result in more network load for Brokers that collect from this Gatherer’s data. As a solution,
you can compute MD5s for all objects, and store them as part of the record. Then, when you
run the exploder you only generate timestamps for the ones for which the MD5s changed -
giving you real last-modification times.

Symptom
The Gatherer substitutes a “%7e” for a “™ in all the user directory URLs.

Solution

The Gatherer conforms to RFC17388, which says that a tilde inside a URL should be encoded
as “%7e”, because it is considered an “unsafe” character.

4.8. Troubleshooting 47

Symptom

When I search using keywords I know are in a document I have indexed with Harvest, the
document isn’t found.

Solution

Harvest uses a content extraction subsystem called Essence that by default does not extract
every keyword in a document. Instead, it uses heuristics to try to select promising keywords.
You can change what keywords are selected by customizing the summarizers for that type
of data, as discussed in Section 4.5.3 (Customizing the type recognition, candidate selection,
presentation unnesting, and summarizing steps). Or, you can tell Essence to use full text
summarizing if you feel the added disk space costs are merited, as discussed in Section 4.7.1
(Setting variables in the Gatherer configuration file).

Symptom
I’'m running Harvest on HP-UX, but the essence process in the Gatherer takes too much
memory.

Solution

The supplied regular expression library has memory leaks on HP-UX, so you need to use the
regular expression library supplied with HP-UX. Change the Makefile in src/gatherer/essence

to read:
REGEX_DEFINE = -DUSE_POSIX_REGEX
REGEX_INCLUDE =
REGEX_0BJ =
REGEX_TYPE = posix
Symptom

I built the configuration files to customize how Essence types/content extracts data, but it
uses the standard typing/extracting mechanisms anyway.

Solution
Verify that you have the Lib-Directory set to the lib/ directory that you put your configu-
ration files. Lib-Directory is defined in your Gatherer configuration file.

Symptom

I am having problems resolving host names on SunOS.

Solution

In order to gather data from hosts outside of your organization, your system must be able
to resolve fully qualified domain names into IP addresses. If your system cannot resolve
hostnames, you will see error messages such as “Unknown Host.” In this case, either:

e the hostname you gave does not really exist; or

e your system is not configured to use the DNS.

To verify that your system is configured for DNS, make sure that the file /etc/resolv.conf
exists and is readable. Read the resolv.conf(5) manual page for information on this file. You
can verify that DNS is working with the nslookup command.

Some sites may use Sun Microsystem’s Network Information Service (NIS) instead of, or in
addition to, DNS. We believe that Harvest works on systems where NIS has been properly

48 Chapter 4. The Gatherer

configured. The NIS servers (the names of which you can determine from the ypwhich com-
mand) must be configured to query DNS servers for hostnames they do not know about. See
the -b option of the ypxfr command.

Symptom

I cannot get the Gatherer to work across our firewall gateway.

Solution

Harvest only supports retrieving HTTP objects through a proxy. It is not yet possible to
request Gopher and FTP objects through a firewall. For these objects, you may need to run
Harvest internally (behind the firewall) or on the firewall host itself.

If you see the “Host is unreachable” message, these are the likely problems:

e your connection to the Internet is temporarily down due to a circuit or routing failure; or

e you are behind a firewall.

If you see the “Connection refused” message, the likely problem is that you are trying to connect
with an unused port on the destination machine. In other words, there is no program listening
for connections on that port.

The Harvest gatherer is essentially a WWW client. You should expect it to work the same as
any Web browser.

Chapter 5

The Broker

5.1 Overview

The Broker retrieves and manages indexing information from Gatherers and other Brokers, and
provides a WWW query interface to the indexing information.

5.2 Basic setup

The Broker is automatically started by the RunHarvest command. Other relevant commands are
described in Section 3.7 (Starting up the system: RunHarvest and related commands).

In the current section we discuss various ways users can customize and tune the Broker, how to
administrate the Broker, and the various Broker programming interfaces.

As suggested in Figure 2 (1), the Broker uses a flexible indexing interface that supports a variety of
indexing subsystems. The default Harvest Broker uses Glimpse as indexer, but other indexers such as
Swish, and WAIS (both freeWAIS and commercial WAIS <ftp://ftp.cnidr.org/pub/software/
freewais/>), also work with the Broker (see Section 5.8 (Using different index/search engines with
the Broker)).

To create a new Broker, run the CreateBroker program. It will ask you a series of questions about
how you’d like to configure your Broker, and then automatically create and configure it. To start
your Broker, use the RunBroker program that CreateBroker generates. The Broker should be
started when your system reboots. To prevent a collection while starting the broker, use the -nocol
option. There are a number of ways you can customize or tune the Broker, discussed in Sections
5.7 (Tuning Glimpse indexing in the Broker) and 5.8 (Using different index/search engines with the
Broker). You may also use the RunHarvest command, discussed in Section 3.7 (Starting up the
system: RunHarvest and related commands), to create both a Broker and a Gatherer.

5.3 Querying a Broker

The Harvest Broker can handle many types of queries. The queries handled by a particular Broker
depend on what index/search engine is being used inside of it (e.g., WAIS does not support some
of the queries that Glimpse does). In this section we describe the full syntax. If a particular Broker
does not support a certain type of query, it will return an error when the user requests that type of

query.

49

50 Chapter 5. The Broker

The simplest query is a single keyword, such as:
lightbulb

Searching for common words (like “computer” or “htm!l”) may take a lot of time.

Particularly for large Brokers, it is often helpful to use more powerful queries. Harvest supports
many different index/search engines, with varying capabilities. At present, our most powerful (and
commonly used) search engine is Glimpse, which supports:

e case-insensitive and case-sensitive queries;

e matching parts of words, whole words, or multiple word phrases (like “resource discovery”);

e Boolean (AND/OR) combinations of keywords;

e approximate matches (e.g., allowing spelling errors);

e structured queries (which allow you to constrain matches to certain attributes);

e displaying matched lines or entire matching records (e.g., for citations);

e specifying limits on the number of matches returned; and

e a limited form of regular expressions (e.g., allowing “wild card” expressions that match all

words ending in a particular suffix).

The different types of queries (and how to use them) are discussed below. Note that you use the
same syntax regardless of what index/search engine is running in a particular Broker, but that not
all engines support all of the above features. In particular, some of the Brokers use WAIS, which
sometimes searches faster than Glimpse but supports only Boolean keyword queries and the ability
to specify result set limits.

The different options - case-sensitivity, approximate matching, the ability to show matched lines vs.
entire matching records, and the ability to specify match count limits - can all be specified with
buttons and menus in the Broker query forms.

A structured query has the form:

tag-name : value

where tag-name is a Content Summary attribute name, and walue is the search value within the
attribute. If you click on a Content Summary, you will see what attributes are available for a
particular Broker. A list of common attributes is shown in Section 7.2 (List of common SOIF
attribute names).

Keyword searches and structured queries can be combined using Boolean operators (AND and OR)
to form complex queries. Lacking parentheses, logical operation precedence is based left to right.
For multiple word phrases or regular expressions, you need to enclose the string in double quotes,

e.g.,
"internet resource discovery"
or
"discov.*"

Double quotes should also be used when searching for non-alphanumeric characters.

5.3. Querying a Broker 51

5.3.1 Example queries

Simple keyword search query:
Arizona

This query returns all objects in the Broker containing the word Arizona.

Boolean query:
Arizona AND desert
This query returns all objects in the Broker that contain both words anywhere in the object
in any order.

Phrase query:
" Arizona desert"
This query returns all objects in the Broker that contain Arizona desert as a phrase. Notice
that you need to put double quotes around the phrase.

Boolean queries with phrases:
"Arizona desert" AND windsurfing
This query returns all objects in the Broker that contain Arizona desert as a phrase and the
word windsurfing.

Simple Structured query:
Title : windsurfing
This query returns all objects in the Broker where the Title attribute contains the value
windsurfing.

Complex query:
" Arizona desert" AND (Title : windsurfing)

This query returns all objects in the Broker that contain the phrase Arizona desert and where
the Title attribute of the same object contains the value windsurfing.

5.3.2 Regular expressions

Some types of regular expressions are supported by Glimpse. A regular expression search can be
much slower that other searches. The following is a partial list of possible patterns. (For more
details see the Glimpse documentations.)

e “joe will match “joe” at the beginning of a line.

e joe$ will match “joe” at the end of a line.

[an}]
Z .

a-ho-z[matches any character between “a” and “h” or between “0” and
y
e . matches any single character except newline.

¢* matches zero or more occurrences of the character “c”.

e .* matches any number of characters except newline.

\ ¥ matches the character “*”. (\ escapes any of the above special characters.)

52 Chapter 5. The Broker

Regular expressions are currently limited to approximately 30 characters, not including meta char-
acters. Regular expressions will generally not cross word boundaries (because only words are stored
in the index). So, for example, "lin. *ing" will find “linking” or “flinching,” but not “linear program-
ming.”

5.3.3 Query options selected by menus or buttons

The query page may have following checkboxes to allow some control of the query specification.

Case insensitive:

By selecting this checkbox the query will become case insensitive (lower case and upper case
letters don’t differ). Otherwise, the query will be case sensitive. The default is case insensitive.

Keywords match on word boundaries:

By selecting this checkbox, keywords will match on word boundaries. Otherwise, a keyword will
match part of a word (or phrase). For example, "network" will match “networking”, "sensitive"
will match “insensitive”, and "Arizona desert" will match “Arizona desertness”. The default is
to match keywords on word boundaries.

Number of errors allowed:

Glimpse allows the search to contain a number of errors. An error is either a deletion, insertion,
or substitution of a single character. The Best Match option will find the match(es) with the
least number of errors. The default is 0 (zero) errors.

Note: The previous three options do not apply to attribute names. Attribute names are always case
insensitive and allow no errors.

5.3.4 Filtering query results

Harvest allows to filter the results of a query by any query term using any attribute defined in the
7.2 (List of common SOIF attribute names). This is done by defining filter parameters in the query
form. Tt is possible to define more that one filter parameter; they will be concatenated by boolean
AND. Filter parameters consist of two parts, separated by the pipe symbol “|”. The first part is a
query expression which is attached to the user query using AND before sending the request to the
broker. The optional second part is a HTML text that shall be displayd on the results page, to give
the user some information on the applied filter.

Example:

<SELECT NAME="filter">

<OPTION VALUE=’’>No Filter

<OPTION VALUE=’uri: "xyz\.edu"|Seach only xyz.edu’>Search xyz.edu only
<OPTION VALUE=’type: html|HTML documents only’>Search HTML documents only
</SELECT>

The first option returns an unfiltered output. The second option returns only pages found on pages
with “xyz.edu” in their URL. The third option returns only HTML-documents. See the advanced
search page of the broker for more examples.

5.4. Customizing the Broker’s Query Result Set 53

5.3.5 Result set presentation

The query page may have following checkboxes allow some control of presentation of the query
return.

Display matched lines (from content summaries):

By selecting this checkbox, the result set presentation will contain the lines of the Content
Summary that matched the query. Otherwise, the matched lines will not be displayed. The
default is to display the matched lines.

Display object descriptions (if available):
Some objects have short, one-line descriptions associated with them. By selecting this check-

box, the descriptions will be presented. Otherwise, the object descriptions will not be displayed.
The default is to display object descriptions.

Display links to indexed content summary:

This checkbox allows you to set whether links to the indexed content summaries are displayed
or not. The default is not to display links to inexed content summaries.

5.4 Customizing the Broker’s Query Result Set

It is possible for the Harvest administrator to customize how the Broker query result set is generated,
by modifying a configuration file that is interpreted by the search.cgi Perl program at query result
time.

search.cgi allows you to customize almost every aspect of its HTML output. The file
SHARVEST HOME/cgi-bin/lib/search.cf contains the default output definitions. Individual bro-
kers can be customized by creating a similar file which overrides the default definitions.

5.4.1 The search.cf configuration file
Definitions are enclosed within SGML-like beginning and ending tags. For example:

<HarvestUrl>
http://harvest.sourceforge.net/
</HarvestUrl>

The last newline character is removed from each definition, so that the above becomes the string
“http:/ /harvest.sourceforge.net/.”

Variable substitution occurs on every definition before it is output. A number of specific variables
are defined by search.cgi which can be used inside a definition. For example:

<BrokerLoad>

Sorry, the Broker at $host, port $port
is currently too heavily loaded to process your request.
Please try again later.<P>

</BrokerLoad>

When this definition is printed out, the variables $host and $port would be replaced with the
hostname and port of the broker.

54 Chapter 5. The Broker

Defined Variables

The following variables are defined as soon as the query string is processed. They can be used before
the broker returns any results.

$maxresult The maximum number of matched lines to be returned
$host The broker hostname

$port The broker port

$query The query string entered by the user

$bquery The whole query string sent to the broker

These variables are defined for each matched object returned by the broker.

$objectnum The number of the returned object

$desc The description attribute of the matched object
$opaque ALL the matched lines from the matched object
$url The original URL of the matched object

$A The access method of $url (e.g.: http)

$H The hostname (including port) from $url

$P The path part of $url

$D The directory part of $P

$F The filename part of $P

$cs_url The URL of the content summary in the broker database
$cs_a Access part of $cs_url

$cs_h Hostname part of $cs_url

$cs_p Path part of $cs_url

$cs_d Directory part of $cs_p

$cs_f Filename part of $cs_p

List of Definitions

Below is a partial list of definitions. A complete list can be found in the search.cf file. Only definitions
likely to be customized are described here.

<Timeout>

Timeout value for search.cgi. If the broker doesn’t respond within this time, search.cgi
will exit.

<ResultHeader>

The first part of the result page. Should probably contain the HTML <TITLE> element and
the user query string.

<ResultTrailer>

The last part of the result page. The default has URL references to the broker home page and
the Harvest project home page.

<ResultSetBegin>

This is output just before looping over all the matched objects.

<ResultSetEnd >

This is output just after ending the loop over matched objects.

5.4. Customizing the Broker’s Query Result Set 55

<PrintObject>
This definition prints out a matched object. It should probably include the variables $url,
$cs_url, $desc, and Sopaque.
<EndBrokerResults>
Printed between <ResultSetEnd> and <ResultTrailer> if the query was successful.
Should probably include a count of matched objects and/or matched lines.
<FailBrokerResults>
Similar to <EndBrokerResults> but prints if the broker returns an error in response to the
query.
<ObjectNumPrintf>

A printf format string for the object number ($objectnum).

<TruncateWarning>

Prints a warning message if the result set was truncated at the maximum number of matched
lines.

These following definitions are somewhat different because they are evaluated as Perl instructions
rather than strings.

<MatchedLineSub>

Evaluated for every matched line returned by the broker. Can be used to indent matched lines
or to remove the leading “Matched line” and attribute name strings.

<InitFunction>

Evaluated near the beginning of the search.cgi program. Can be used to set up special
variables or read data files.

<PerObjectFunction>
Evaluated for each object just before <PrintObject> is called.

<FormatAttribute>

Evaluated for each SOIF attribute requested for matched objects (see Section 5.4.4 (Displaying
SOIF attributes in results)). $att is set to the attribute name, and $val is set to the attribute
value.

5.4.2 Example search.cf customization file

The following definitions demonstrate how to change the search.cgi output. The
<PerObjectFunction> ensures that the description is not empty. It also prepends the string
“matched data:” before any matched lines. The <PrintObject> specification prints the object
number, description, and indexing data all on the first line. The description is wrapped around
HMTL anchor tags so that it is a link to the object originally gathered. The words “indexing data”
are a link to the displaySOIF program which will format the content summary for HTML browsers.
The object number is formatted as a number in parenthesis such that the whole thing takes up four
spaces.

The <MatchedLineSub> definition includes four substitution expressions. The first removes the
words “Matched line:” from the beginning of each matched line. The second removes SOIF attributes

56 Chapter 5. The Broker

of the form “partial-text{ 43} from the beginning of a line. The third displays the attribute names
(e.g. partial-text#) in italics. The last expression indents each line by five spaces to align it with
the description line. The definition for <EndBrokerResults> slightly modifies the report of how
many objects were matched.

Demo to show some of the customization features for the Harvest output
More information can be found in the manual at:
http://harvest.sourceforge.net/harvest/doc/html/manual.html

The PerObjectFunction is Perl code evaluated for every hit
<PerObjectFunction>
Create description
Is the descriptions provided by Harvest very short (e.g. missing <TITLE>)?
if (length($desc) < 5) {

Yes: use filename ($F) instead

$description = "<I>File:</I> $F";
} else {

No: use description provided by Harvest

$description = $desc;

}

Format matched lines ("opaque data") if data is present
if ($opaque ne ’’) {

$opaque = "matched lines:
$opaque"
}

</PerObjectFunction>

PrintObject defines the apperance of hits
<PrintObject>
$objectnum $description \
[\
indexing data]
<pre>
$opaque
</pre>\n
</Print0Object>

Format the appearance of the hit number
<0ObjectNumPrintf>

(h2d)

</0bjectNumPrintf>

Format the appearance of every matched line

<MatchedLineSub>

s/"“Matched line: *//; # Remove "Matched line:"

s/~ ([\w-1+#) [\w-1+{\d+}:\t/\1/; # Remove SOIF attributes of the form "partial-text{43}:"
s/~ ([\w-1+#) /<I>\1<\/I>/; # Format attribute names as italics

s/=.x/ $&/; # Add spaces to indent text

</MatchedLineSub>

5.5. World Wide Web interface description 57

Modifies the report of how many objects were matched
<EndBrokerResults>

Found $nopaquelines matched lines, $nobjects objects.
<P>\n

</EndBrokerResults>

5.4.3 Integrating your customized configuration file

The search.cgi configuration files are kept in $HARVEST HOME/cgi-bin/lib. The name of a
customized file is listed in the query.html form, and passed as an option to the search.cgi program.

The simplest way to specify the customized file is by placing an <INPUT> tag in the HTML form:

<INPUT TYPE="hidden" NAME="brokerqueryconfig" VALUE="custom.cf">

Another way is to allow users to select from different customizations with a <SELECT> list:

<SELECT NAME="brokerqueryconfig">

<0PTION VALUE=""> Default

<0PTION VALUE="customl.cf"> Customized

<OPTION VALUE="custom2.cf" SELECTED> Highly Customized
</SELECT>

5.4.4 Displaying SOIF attributes in results

It is possible to request SOIF attributes from the HTML query form. A simple approach is to include
a select list in the query form:

<SELECT MULTIPLE NAME="attribute">
<0PTION VALUE="title">

<0PTION VALUE="author">

<0OPTION VALUE="date">

<OPTION VALUE="subject">

</SELECT>

In this manner, the user may control which attributes get displayed. The layout of these attributes
when the results are displayed in HTML is controlled by the <FormatAttribute> specification in
the search.cf file described in Section 5.4.1 (The search.cf configuration file).

5.5 World Wide Web interface description

To allow Web browsers to easily interface with the Broker, we implemented a World Wide Web
interface to the Broker’s query manager and administrative interfaces. This WWW interface, which
includes several HTML files and a few programs that use the Common Gateway Interface (CGI),
consists of the following:

e HTML files that use Forms support to present a graphical user interface (GUI) to the user;

e CGI programs that act as a gateway between the user and the Broker; and

e Help files for the user.

58 Chapter 5. The Broker

Users go through the following steps when using a Broker to locate information:

1. The user issues a query to the Broker.
2. The Broker processes the query, and returns the query results to the user.

3. The user can then view content summaries from the result set, or access the URLs from the
result set directly.

To provide a WWW-queryable interface, the Broker needs to run in conjunction with an HTTP
server. Section 3.5 (Additional installation for the Harvest Broker) describes how to configure your
HTTP server to work with Harvest.

You can run the Broker on a different machine than your HTTP server runs on, but if you want users
to be able to view the Broker’s content summaries then the Broker’s files will need to be accessible
to your HTTP server. You can NFS mount those files or manually copy them over. You'll also need
to change the Brokers.cf file to point to the host that is running the Broker.

5.5.1 HTML files for graphical user interface

CreateBroker creates some HTML files to provide GUIs to the user:

query.html

Contains the GUI for the query interface. CreateBroker will install different query.html files
for Glimpse, Swish, and WAIS, since each subsystem requires different defaults and supports
different functionality (e.g., WAIS doesn’t support approximate matching like Glimpse). This
is also the “home page” for the Broker and a link to this page is included at the bottom of all
query results.

admin.html
Contains the GUI for the administrative interface. This file is installed into the admin directory
of the Broker.

Brokers.cf

Contains the hostname and port information for the supported brokers. This file is installed
into the $HARVEST HOME/brokers directory. The query.html file uses the value of the
“broker” FORM tag to pass the name of the broker to search.cgi which in turn retrieves the
host and port information from Brokers.cf.

5.5.2 CGI programs

When you install the WWW interface (see Section 5 (The Broker)), a few programs are installed
into your HTTP server’s /Harvest/cgi-bin directory:

search.cgi
This program takes the submitted query from query.html, and sends it to the specified Broker.
It then retrieves the query results from the Broker, formats them in HTML, and sends the
result set in HTML to the user.

displaySOIF.cgi

This program displays the content summaries from the Broker.

5.6. Administrating a Broker 59

BrokerAdmin.pl.cgi

This program will take the submitted administrative command from admin.html and send it
to the appropriate Broker. It retrieves the result of the command from the Broker and displays
it to the user.

5.5.3 Help files for the user

The WWW interface to the Broker includes a few help files written in HTML. These files are installed
on your HTTP server in the /Harvest/brokers directory when you install the broker (see Section 5
(The Broker)):

queryhelp.html

Provides a tutorial on constructing Broker queries, and on using the gquery.html forms.
query.html has a link to this help page.

adminhelp.html

Provides a tutorial on submitting Broker administrative commands using the admin.html form.
admin.html has a link to this help page.

soifhelp.html
Provides a brief description of SOIF.

5.6 Administrating a Broker

Administrators have two basic ways for managing a Broker: through the broker.conf and Collec-
tion.conf configuration files, and through the interactive administrative interface. The interactive
interface controls various facilities and operating parameters within the Broker. We provide a HTML
interface page for these administrative commands. See Section 5.9 (Collector interface description:
Collection.conf) for additional information on the Broker administrative and collector interfaces.

The broker.conf file is a list of variable names and their values, which consists of information about
the Broker (such as the directory in which it lives) and the port on which it runs. The Collec-
tion.conf file (see Section 5.9 (Collector interface description: Collection.conf) for an example) is a
list of collection points from which the Broker collects its indexing information. The CreateBroker
program automatically generates both of these configuration files. You can manually edit these files
if needed.

The CreateBroker program also creates the admin.html file, which is the WWW interface to the
Broker’s administrative commands. Note that all administrative commands require a password as
defined in broker.conf.

Note: Changes to the Broker configuration are not saved when the Broker is restarted. Permanent
changes to the Broker configuration should be made by manually editing the broker.conf file.

The administrative interface created by CreateBroker has the following window fields:

Command Select an administrative command. See below for a

description of the commands.

Parameters Specify parameters for those commands that need them.
Password The administrative password.
Broker Host The host where the broker is running.

Broker Port The port where the broker is listening.

60 Chapter 5. The Broker

The administrative interface created by CreateBroker supports the following commands:

Add objects by file:
Add object(s) to the Broker. The parameter is a list of filenames that contain SOIF object to
be added to the Broker.

Close log:
Flush all accumulated log information and close the current log file. Causes the Broker to stop
logging. No parameters.

Compress Registry:

Performs garbage collection on the Registry file. No parameters.

Delete expired objects:

Deletes any object from the Broker whose Time-to-Live has expired. No parameters.

Delete objects by query:
Deletes any object(s) that matches the given query. The parameter is a query with the same
syntax as user queries. Query flags are currently unsupported.
Delete objects by oid:
Deletes the object(s) identified by the given OID numbers. The parameter is a list of OID
numbers. The OID numbers can be obtained by using the dumpregistry command.
Disable log type:
Disables logging information about a particular type of event. The parameter is an event type.
See Enable log type for a list of events.
Enable log type:

Enables logging information about a particular type of events. The parameter is the name of
an event type. Currently, event types are limited to the following:

Update Log updated objects.
Delete Log deleted objects.
Refresh Log refreshed objects.
Query Log user queries.
Query-Return Log objects returned from a query.
Cleaned Log objects removed by the cleaner.
Collection Log collection events.
Admin Log administrative events.
Admin-Return Log the results of administrative events.
Bulk-Transfer Log bulk transfer events.
Bulk-Return Log objects sent by bulk transfers.
Cleaner-0On Log cleaning events.
Compressing-Registry Log registry compression events.
A1l Log all events.

Flush log:

Flush all accumulated log information to the current log file. No parameters.

Generate statistics:

Generates some basic statistics about the Broker object database. No parameters.

5.6. Administrating a Broker 61

Index changes:

Index only the objects that have been added recently. No parameters.

Index corpus:

Index the entire object database. No parameters.

Open log:
Open a new log file. If the file does not exist, create a new one. The parameter is the name
(relative to the broker) of a file to use for logging.

Restart server:
Force the broker to reread the Registry and reindex the corpus. This does not actually kill the
broker process. No parameters.

Rotate log file:
Rotates the current log file to LOG.YYYYMMDD. Opens a new log file. No parameters.

Set variable:

Sets the value of a broker configuration variable. Takes two parameters, the name of a con-
figuration variable and the new value for the variable. The configuration variables that can
be set are those that occur in the broker.conf file. The change only is valid until the broker
process dies.

Shutdown server:

Cleanly shutdown the Broker. No parameters.

Start collection:

Perform collections. No parameters.

Delete older objects of duplicate URLs:

Occasionally a broker may end up with multiple summarizes for individual URLs. This can
happen when the Gatherer changes its description, hostname, or port number. Use this com-
mand to search the broker for duplicated URLs. When two objects with the same URL are
found, the object with the least-recent timestamp is removed.

5.6.1 Deleting unwanted Broker objects

If you build a Broker and then decide not to index some of that data (e.g., you decide it would make
sense to split it into two different Brokers, each targetted to a different community), you need to
change the Gatherer’s configuration file, rerun the Gatherer, and then let the old objects time out
in the Broker (since the Broker and Gatherer maintain separate databases). If you want to clean
out the Broker’s data sooner than that you can use the Broker’s administrative interface in one of
three ways:

1. Use the 'Remove object by name’ command. This is only reasonable if you have a small number
of objects to remove in the Broker.

2. Use the ’Remove object by query’. This might be the best option if, for example, you can
construct a regular expression based on the URLs you want to remove.

62 Chapter 5. The Broker

3. Shutdown the server, manually remove the Broker’s objects/* files, and then restart the Broker.
This is easiest, although if you have a large number of objects it will take longer to rebuild
the index. A simple way to accomplish this is by “rebooting” the Broker by deleting all the
current objects, and doing a full collection, as follows:

% mv objects objects.old
% rm -rf objects.old &

% broker ./admin/broker.conf -new

After removing objects, you should use the Indez corpus command.

5.6.2 Command-line Administration

It is possible to perform administrative functions by using the brkclient program from the
command-line and shell scripts. For example, to force a collection, run:

% brkclient localhost 8501 ’#ADMIN #Password secret #collection’

See your broker’s raw admin.html file for a complete list of administrative commands.

5.7 Tuning Glimpse indexing in the Broker

The Glimpse indexing system can be tuned in a variety of ways to suit your particular needs.
Probably the most noteworthy parameter is indexing granularity, for which Glimpse provides three
options: a tiny index (2-3% of the total size of all files — your mileage may vary), a small index (7-
8%), and a medium-size index (20-30%). Search times are better with larger indexes. By changing
the GlimpseIndex-Option in your Broker’s broker.conf file, you can tune Glimpse to use one of
these three indexing granularity options. By default, GlimpseIndex-Option builds a medium-size
index using the glimpseindex program.

Note also that with Glimpse it is much faster to search with “show matched lines” turned off in the
Broker query page.

Glimpse uses a “stop list” to avoid indexing very common words. This list is not fixed, but rather
computed as the index is built. For a medium-size index, the default is to put any word that appears
at least 500 times per Mbyte (on the average) in the stop-list. For a small-size index, the default
is words that appear in at least 80% of all files (unless there are fewer than 256 files, in which case
there is no stop-list). Both defaults can be changed using the -S option, which should be followed
by the new number (average per Mbyte when -b indexing is used, or % of files when -o indexing is
used). Tiny-size indexes do not maintain a stop-list (their effect is minimal).

glimpseindex includes a number of other options that may be of interest. You can find out
more about these options (and more about Glimpse in general) in the Glimpse documenta-
tions. If you’d like to change how the Broker invokes the glimpseindex program, then edit the
src/broker/Glimpse/index.c file from the Harvest source distribution.

5.7.1 The glimpseserver program

The Glimpse system comes with an auxiliary server called glimpseserver, which allows indexes to
be read into a process and kept in memory. This avoids the added cost of reading the index and

5.8. Using different index/search engines with the Broker 63

starting a large process for each search. glimpseserver is automatically started each time you run
the Broker, or reindex the Broker’s corpus. If you do not want to run glimpseserver, then set
GlimpseServer-Host to “false” in your broker.conf.

5.8 Using different index/search engines with the Broker

By default, Harvest uses the Glimpse index/search subsystem. However, Harvest defines a flexible
indexing interface, to allow Broker administrators to use different index/search subsystems to ac-
commodate domain-specific requirements. For example, it might be useful to provide a relational
database back-end.

At present we distribute code to support an interface to both the free and the commercial WAIS
index/search engines, Glimpse, and Swish.

Below we discuss how to use other index/search engine instead of Glimpse in the Broker, and provide
some brief discussion of how to integrate a new index/search engine into the Broker.

5.8.1 Using Swish as an indexer

Harvest includes support for using Swish as indexing engine with the Broker. Swish is a nice
alternative to Glimpse if you need faster search support and are willing to lose the more powerful
query features. It also is an alternative in cases of trouble with Glimpse’ copyright status.

To use Swish with an existing Broker, you need to change the Indezer-Type variable in broker.conf
to “Swish”.

You can also specify that you want to use Swish for a Broker, when you use the RunHarvest command
by running: RunHarvest -swish.

5.8.2 Using WAIS as an indexer

Support for using WAIS (both freeWAIS and WAIS Inc.’s index/search engine) as the Broker’s
indexing and search subsystem is included in the Harvest distribution. WALIS is a nice alternative to
Glimpse if you need faster search support and are willing to lose the more powerful query features.

To use WAIS with an existing Broker, you need to change the Indezer-Type variable in broker.conf to
“WAIS”; you can choose among the WAIS variants by setting the WAIS-Flavor variable in broker.conf
to “Commercial-WAIS”, “freeWAIS”, or “WAIS”. Otherwise, CreateBroker will ask you if you want
to use WAIS, and where the WAIS programs (waisindex, waissearch, waisserver, and with the
commercial version of WAIS waisparse) are located. When you run the Broker, a WAIS server will
be started automatically after the index is built.

You can also specify that you want to use WAIS for a Broker, when you use the RunHarvest

command by running: RunHarvest -wais.

5.9 Collector interface description: Collection.conf

The Broker retrieves indexing information from Gatherers or other Brokers through its Collector
interface. A list of collection points is specified in the admin/Collection.conf configuration file. This
file contains a collection point on each line, with 4 fields. The first field is the host of the remote

64 Chapter 5. The Broker

Gatherer or Broker, the second field is the port number on that host, the third field is the collection
type, and the forth field is the query filter or — if there is no filter.

The Broker supports various types of collections as described below:

Type Remote Process Description Compression?
0 Gatherer Full collection each time No
1 Gatherer Incremental collections No
2 Gatherer Full collection each time Yes
3 Gatherer Incremental collections Yes
4 Broker Full collection each time No
5 Broker Incremental collections No
6 Broker Collection based on a query No
7 Broker Incremental based on a query No

The query filter specification for collection types 6 and 7 contains two parts: the —QUERY key-
words portion and an optional -FLAGS flags portion. The —-QUERY portion is passed on to the
Broker as the keywords for the query (the keywords can be any Boolean and/or structured query);
the - FLAGS portion is passed on to the Broker as the indexer-specific flags to the query. The
following table shows the valid indexer-specific flags for the supported indexers:

Indexer Flag Description
Al1: #desc Show Description Lines
Glimpse: #index case insensitive Case Insensitive
#index case sensitive Case sensitive
#index error number Allow "number" errors
#index matchword Matches on word boundaries
#index maxresult number Allow max of "number" results
#opaque Show matched lines
Wais: #index maxresult number Allow max of '"number" results
#opaque Show scores and rankings

The following is an example Collection.conf, which collects information from 2 Gatherers (one
compressed incrementals and the other uncompressed full transfers), and collects information from
3 Brokers (one incrementally based on a timestamp, and the others using query filters):

gatherer-hostl.foo.com 8500 3 --

gatherer-host2.foo.com 8500 0 --

broker-hostl.foo.com 8501 5 --

broker-host2.foo.com 8501 6 --QUERY (URL : document) AND gnu
broker-host3.foo.com 8501 7 --QUERY Harvest --FLAGS #index case sensitive

5.10 Troubleshooting

Symptom

The Broker is running but always returns empty query results.

Solution

5.10. Troubleshooting 65

Look at the log messages in the broker.out file in the Broker’s directory for error messages.
If your Broker didn’t index the data, use the administrative interface to force the Broker to
build the index (see Section 5.6 (Administrating a Broker)).

Symptom
When I query my Broker, I get a "500 Server Error".

Solution

Generally, the “500” errors are related to a CGI program not working correctly or a mis-
configured httpd server. Make sure that the userid running the HTTP server has access to
the Harvest cgi-bin directory and the Perl include files in $HARVEST HOME/lib. Refer to
Section 3.5 (Additional installation for the Harvest Broker) for further details.

Symptom

I see duplicate documents in my Broker.

Solution

The Broker performs duplicate elimination based on a combination of MD5 checksums and
Gatherer-Host, Name, Version. Therefore, you can end up with duplicate documents if your
Broker collects from more than one Gatherer, each of which gathers from the (a subset of)
the same URLSs. (As an aside, the reason for this notion of duplicate elimination is to allow a
single Broker to contain several different SOIF objects for the same URL, but summarized in
different ways.)

Two solutions to the problem are:

1. Run your Gatherers on the same host.
2. Remove the duplicate URLs in a customized version of the search.cgi program by doing
a string comparison of the URLs.
Symptom
The Broker takes a long time and does not answer queries.
Solution

Some queries are quite expensive, because they involve a great deal of I/O. For this reason we

modified the Broker so that if a query takes longer than 5 minutes, the query process is killed.

The best solution is to use a less expensive query, for example by using less common keywords.
Symptom

Some of the query options (such as structured or case sensitive queries) aren’t working.

Solution

This usually means you are using an index/search engine that does not support structured
queries (like the current Harvest support for commercial WAIS). If you are setting up your own
Broker (rather than using someone else’s Broker), see Section 5.8 (Using different index/search
engines with the Broker) for details on how to switch to other index/search engines. Or, it
could be that your search.cgi program is an old version and should be updated.

Symptom
I get syntazx errors when I specify queries.

Solution

Usually this means you did not use double quotes where needed. See Section 5.3 (Querying a
Broker).

66 Chapter 5. The Broker

Symptom

When I submit a query, I get an answer faster than I can believe it takes to perform the query,
and the answer contains garbage data.

Solution

This probably indicates that your httpd is misconfigured. A common case is not putting the
"ScriptAlias’ before the ’Alias’ in your conf/httpd.conf file, when running the Apache httpd.
See Section 3.5 (Additional installation for the Harvest Broker).

Symptom

When I make changes to the Broker configuration via the administration interface, they are
lost after the Broker is restarted.

Solution

The Broker administration interface does not save changes across sessions. Permanent changes
to the Broker configuration should be done through the broker.conf file.

Symptom

My Broker is running very slowly.

Solution

Performance tuning can be complicated, but the most likely problem is that you are running
on a machine with insufficient RAM, and paging a lot because the query engine kicks pages out
in order to access the needed index and data files. (In UNIX the disk buffer cache competes
with program and data pages for memory.)

A simple way to tell is to run “vmstat 5” in one window, and after a couple of lines of output,
issue a query from another window. This will print a line of measurements about the virtual
memory status of your machine every 5 seconds. In particular, look at the “pi” and “po”
columns. If the numbers suddenly jump into the 500-1,000 range after you issue the query,
you are paging a lot.

Note that paging problems are accentuated by running simultaneous memory-intensive or disk
I/O-intensive programs on your machine. Simultaneous queries to a single Broker should not
cause a paging problem, because the Broker processes the queries sequentially.

It is best to run Brokers on an otherwise mostly unused machine with at least 128 MB of RAM
(or more, if the above “vmstat” experiment indicates you are paging alot).

One other performance enhancer is to run an httpd-accelerator on your Broker machine, to
intercept queries headed for your Broker. While it will not cache the results of queries, it will
reduce load on the machine because it provides a very efficient means of returning results in the
case of concurrent queries. Without the accelerator the results are sent back by a search.cgi
UNIX process per query, and inefficiently time sliced by the UNIX kernel. With an accelerator
the search.cgi processes exit quickly, and let the accelerator send the results back to the
concurrent users. The accelerator will also reduce load for (non-query) retrievals of data from
your httpd server.

Chapter 6

Programs and layout of the installed
Harvest software

6.1 $HARVEST HOME

The top directory of where you installed Harvest is known as $HARVEST HOME. By default,
SHARVEST HOME is /usr/local/harvest. The following files and directories are located in $HAR-
VEST HOME:

RunHarvest* brokers/ gatherers/ tmp/
bin/ cgi-bin/ 1ib/

RunHarvest is the script used to create and run Harvest servers (see Section 3.7 (Starting up the
system: RunHarvest and related commands)). RunHarvest has the same command line syntax as

Harvest.

6.2 $HARVEST HOME, /bin

The $HARVEST HOME/bin directory only contains programs that users would normally run di-
rectly. All other programs (e.g., individual summarizers for the Gatherer) as well as Perl library
code are in the lib directory. The bin directory contains the following programs:

CreateBroker
Creates a Broker.

Usage: CreateBroker [skeleton-tree [destination]]

Gatherer

Main user interface to the Gatherer. This program is run by the RunGatherer script found in
a Gatherer’s directory.

Usage: Gatherer [-manual|-export|-debug] file.cf

Harvest

The program used by RunHarvest to create and run Harvest servers as per the user’s descrip-
tion.

67

68 Chapter 6. Programs and layout of the installed Harvest software

Usage: Harvest [flags]

where flags can be any of the following:

-novice Simplest Q&A. Mostly uses the defaults.
-glimpse Use Glimpse for the Broker. (default)
-swish Use Swish for the Broker.

-wais Use WAIS for the Broker.

-dumbtty Dumb TTY mode.

-debug Debug mode.

-dont-run Don’t run the Broker or the Gatherer.
-fake Doesn’t build the Harvest servers.
-protect Don’t change the umask.

broker

The Broker program. This program is run by the RunBroker script found in a Broker’s
directory. Logs messages to both broker.out and to admin/LOG.

Usage: broker [broker.conf file] [-nocoll

gather
The client interface to the Gatherer.

Usage: gather [-info] [-nocompress] host port [timestamp]

6.3 SHARVEST HOME/brokers

The SHARVEST HOME/brokers directory contains images and logos in #mages directory, some
basic tutorial HTML pages, and the skeleton files that CreateBroker uses to construct new Brokers.
You can change the default values in these created Brokers by editing the files in skeleton.

6.4 SHARVEST HOME/cgi-bin
The $HARVEST HOME/cgi-bin directory contains the programs needed for the WWW interface

to the Broker (described in Section 5.5.2 (CGI programs)) and configuration files for search.cgi in
lib directory.

6.5 SHARVEST HOME/gatherers

The $HARVEST HOME/gatherers directory contains example Gatherers discussed in Section 8
(Gatherer Examples). RunHarvest, by default, will create the new Gatherer in this directory.

6.6 SHARVEST HOME/Ilib

The $HARVEST HOME/lib directory contains number of Perl library routines and other programs
needed by various parts of Harvest, as follows:

chat2.pl, ftp.pl, socket.ph

Perl libraries used to communicate with remote FTP servers.

6.7. $SHARVEST HOME/lib/broker 69

dateconv.pl, lsparse.pl, timelocal.pl

Perl libraries used to parse 1s output.

ftpget
Program used to retrieve files and directories from FTP servers.

Usage: ftpget [-htmlify] localfile hostname filename A,I username password
gopherget.pl
Perl program used to retrieve files and menus from Gopher servers.

Usage: gopherget.pl localfile hostname port command

harvest-check.pl
Perl program to check whether gatherers and brokers are up.

Usage: harvest-check.pl [-v]

mdb5
Program used to compute MD5 checksums.
Usage: md5 file [...]

newsget.pl

Perl program used to retrieve USENET articles and group summaries from NNTP servers.

Usage: newsget.pl localfile news-URL

soif.pl, soif-mem-efficient.pl
Perl library used to process SOIF.
urlget
Program used to retrieve a URL.
Usage: urlget URL
urlpurge
Program to purge the local disk URL cache used by urlget and the Gatherer.
Usage: urlpurge

6.7 $HARVEST HOME/lib/broker

The $HARVEST HOME/lib/broker directory contains the search and index programs needed by
the Broker, plus several utility programs needed for Broker administration, as follows:

BrokerRestart
This program will issue a restart command to a broker.

Usage: BrokerRestart [-password passwd] host port

brkclient

Client interface to the broker. Can be used to send queries or administrative commands to a
broker.

Usage: brkclient hostname port command-string

70 Chapter 6. Programs and layout of the installed Harvest software

dumpregistry
Prints the Broker’s Registry file in a human-readable format.

Usage: dumpregistry [-count] [BrokerDirectory]
agrep, glimpse, glimpseindex, glimpseindex.bin, glimpseserver
The Glimpse indexing and search system as described in Section 5 (The Broker).

swish

The Swish indexing and search program as an alternative to Glimpse.

info-to-html.pl, mkbrokerstats.pl
Perl programs used to generate Broker statistics and to create stats.html.
Usage: gather -info host port | info-to-html.pl > host.port.html

Usage: mkbrokerstats.pl broker-dir > stats.html

6.8 SHARVEST HOME/lib/gatherer

The SHARVEST HOME/lib/gatherer directory contains the default summarizers described in Sec-
tion 4.5 (Extracting data for indexing: The Essence summarizing subsystem), plus various utility
programs needed by the summarizers and the Gatherer, as follows:

URL-filter-default
Default URL filter as described in Section 4.3 (RootNode specifications).

bycontent.cf, byname.cf, byurl.cf, magic, stoplist.cf, quick-sum.cf
Essence configuration files as described in Section 4.5.3 (Customizing the type recognition,
candidate selection, presentation unnesting, and summarizing steps).

* . sum
Essence summarizers as discussed in Section 4.5 (Extracting data for indexing: The Essence
summarizing subsystem).

HTML-sum.pl

Alternative HTML summarizer written in Perl.

HTMLurls
Program to extract URLs from a HTML file.
Usage: HTMLurls [-base-url url] filename

catdoc, xls2csv, catdoc-lib

Programs and files used by Microsoft Word summarizer.

dvi2tty, print-c-comments, ps2txt, ps2txt-2.1, pstext, skim
Programs used by various summarizers.

gifinfo
Program to support summarizers.

12h

Program used by TeX summarizer.

6.8. $HARVEST HOME/lib/gatherer 71

rast, smgls, sgmlsasp, sgmls-lib

Programs and files used by SGML summarizer.

rtf2html

Program used by RTF summarizer.

wp2x, wp2x.sh, wp2z-lib

Programs and files used by WordPerfect summarizer.

hexbin, unshar, uudecode

Programs used to unnest nested objects.

cksoif

Programs used to check the validity of a SOIF stream (e.g., to ensure that there is not parsing
errors).

Usage: cksoif < INPUT.soif

cleandb, consoldb, expiredb, folddb, mergedb, mkgathererstats.pl, mkindex, rmbinary

Programs used to prepare a Gatherer’s database to be exported by gatherd.
cleandb ensures that all SOIF objects are valid, and deletes any that are not;
consoldb will consolidate n GDBM database files into a single GDBM database file;

expiredb deletes any SOIF objects that are no longer valid as defined by its Time-to-Live
attribute;

folddb runs all of the operations needed to prepare the Gatherer’s database for export by
gatherd;

mergedb consolidates GDBM files as described in Section 4.7.7 (Incorporating manually gen-
erated information into a Gatherer);

mkgathererstats.pl generates the INFO.soif statistics file;
mkindex generates the cache of timestamps; and

rmbinary removes binary data from a GDBM database.

enum, prepurls, staturl

Programs used by Gatherer to perform the RootNode and LeafNode enumeration for the
Gatherer as described in Section 4.3 (RootNode specifications).

enum performs a RootNode enumeration on the given URLs;
prepurls is a wrapper program used to pipe Gatherer and essence together;

staturl retrieves LeafNode URLs to determine if the URL has been modified or not.

fileenum, ftpenum, ftpenum.pl, gopherenum-*, httpenum-*, newsenum
Programs used by enum to perform protocol specific enumeration.
fileenum performs a RootNode enumeration on ‘“file” URLs;
ftpenum calls ftpenum.pl to perform a RootNode enumeration on “ftp” URLs;
gopherenum-breadth performs a breadth first RootNode enumeration on “gopher” URLs;
gopherenum-depth performs a depth first RootNode enumeration on “gopher” URLs;
httpenum-breadth performs a breadth first RootNode enumeration on “http” URLs;
httpenum-depth performs a depth first RootNode enumeration on “http” URLs;

newsenum performs a RootNode enumeration on “news” URLs;

72 Chapter 6. Programs and layout of the installed Harvest software

essence

The Essence content extraction system as described in Section 4.5.3 (Customizing the type
recognition, candidate selection, presentation unnesting, and summarizing steps).

Usage: essence [options] -f input-URLs or essence [options] URL

where options are:

--dbdir directory Directory to place database

--full-text Use entire file instead of summarizing
--gatherer-host Gatherer-Host value

--gatherer-name Gatherer-Name value

--gatherer-version Gatherer-Version value

--help Print usage information

--libdir directory Directory to place configuration files

--log logfile Name of the file to log messages to
--max-deletions n Number of GDBM deletions before reorganization

--minimal-bookkeeping Generates a minimal amount of bookkeeping attrs

--no-access Do not read contents of objects
--no-keywords Do not automatically generate keywords
--allowlist filename File with list of types to allow

--stoplist filename File with list of types to remove

--tmpdir directory Name of directory to use for temporary files
--type-only Only type data; do not summarize objects
--verbose Verbose output

--version Version information

print-attr

Reads in a SOIF stream from stdin and prints the data associated with the given attribute to
stdout.

Usage: cat SOIF-file | print-attr Attribute

gatherd, in.gatherd

Daemons that exports the Gatherer’s database. in.gatherd is used to run this daemon from
inetd.

Usage: gatherd [-db | -index | -log | -zip | -cf file] [-dir dir] port

Usage: in.gatherd [-db | -index | -log | -zip | -cf file]l [-dir dir]

gdbmutil

Program to perform various operations on a GDBM database.

Usage: gdbmutil consolidate [-d | -D] master-file file [file ...]
Usage: gdbmutil delete file key
Usage: gdbmutil dump file

Usage: gdbmutil fetch file key

Usage: gdbmutil keys file

Usage: gdbmutil print [-gatherd] file
Usage: gdbmutil reorganize file
Usage: gdbmutil restore file

Usage: gdbmutil sort file

Usage: gdbmutil stats file

Usage: gdbmutil store file key < data

6.9. $HARVEST HOME /tmp 73

mktemplate

Program to generate valid SOIF based on a more easily editable SOIF-like format (e.g., SOIF
without the byte counts).

Usage: mktemplate < INPUT.txt > QUTPUT.soif
quick-sum
Simple Perl program to emulate Essence’s quick-sum.cf processing for those who cannot com-
pile Essence with the corresponding C code.
template2db
Converts a stream of SOIF objects (from stdin or given files) into a GDBM database.
Usage: template2db database [tmpl tmpl...]
wrapit

Wraps the data from stdin into a SOIF attribute-value pair with a byte count. Used by Essence
summarizers to easily generate SOIf.

Usage: wrapit [Attributel

kill-gatherd

Script to kill gatherd process.

6.9 $SHARVEST HOME/tmp

The SHARVEST HOME/tmp directory is used by search.cgi to store search result pages.

74

Chapter 6. Programs and layout of the installed Harvest software

Chapter 7

The Summary Object Interchange
Format (SOIF)

Harvest Gatherers and Brokers communicate using an attribute-value stream protocol called the
Summary Object Interchange Format (SOIF), an example of which is available in Section 8.1 (Ex-
ample 1). Gatherers generate content summaries for individual objects in SOIF, and serve these
summaries to Brokers that wish to collect and index them. SOIF provides a means of bracketing
collections of summary objects, allowing Harvest Brokers to retrieve SOIF content summaries from a,
Gatherer for many objects in a single, efficient compressed stream. Harvest Brokers provide support
for querying SOIF data using structured attribute-value queries and many other types of queries, as
discussed in Section 5.3 (Querying a Broker).

7.1 Formal description of SOIF

The SOIF Grammar is as follows:

SOIF ::= 0BJECT SOIF | OBJECT

0BJECT ::= @ TEMPLATE-TYPE { URL ATTRIBUTE-LIST }
ATTRIBUTE-LIST ::= ATTRIBUTE ATTRIBUTE-LIST | ATTRIBUTE
ATTRIBUTE ::= IDENTIFIER {VALUE-SIZE} DELIMITER VALUE
TEMPLATE-TYPE ::= Alpha-Numeric-String

IDENTIFIER ::= Alpha-Numeric-String

VALUE ::= Arbitrary-Data

VALUE-SIZE ::= Number

DELIMITER 1= "i<tab>"

7.2 List of common SOIF attribute names

Each Broker can support different attributes, depending on the data it holds. Below we list a set of
the most common attributes:

Abstract

Brief abstract about the object.
Author

Author(s) of the object.

75

76

Chapter 7. The Summary Object Interchange Format (SOIF)

Description
Brief description about the object.
File-Size
Number of bytes in the object.
Full-Text
Entire contents of the object.
Gatherer-Host
Host on which the Gatherer ran to extract information from the object.
Gatherer-Name
Name of the Gatherer that extracted information from the object. (eg.
Full-Text, Selected-Text, or Terse).
Gatherer-Port
Port number on the Gatherer-Host that serves the Gatherer’s information.
Gatherer-Version
Version number of the Gatherer.
Update-Time
The time that Gatherer updated the content summary for the object.
Keywords
Searchable keywords extracted from the object.
Last-Modification-Time
The time that the object was last modified.
MD5
MD5 16-byte checksum of the object.
Refresh-Rate
The number of seconds after Update-Time when the summary object is to
be re-generated. Defaults to 1 month.
Time-to-Live
The number of seconds after Update-Time when the summary object is
no longer valid. Defaults to 6 months.
Title
Title of the object.
Type
The object’s type. Some example types are:

Archive

Audio

Awk

Backup

Binary

C

CHeader
Command
Compressed
CompressedTar
Configuration
Data
Directory
DotFile

Dvi

FAQ

FYI

Font
FormattedText
GDBM
GNUCompressed

7.2. List of common SOIF attribute names

GNUCompressedTar
HTML

Image
Internet-Draft
MacCompressed
Mail

Makefile
ManPage
Object
OtherCode
PCCompressed
Patch

Pdf

Perl
PostScript
RCS

README

RFC

RTF

SCCS
ShellArchive
Tar

Tcl

Tex

Text

Troff
Uuencoded

WaisSource

Update-Time
The time that the summary object was last updated.
REQUIRED field, no default.
URI
Uniform Resource Identifier.
URL-References
Any URL references present within HTML objects.

78

Chapter 7. The Summary Object Interchange Format (SOIF)

Chapter 8
Gatherer Examples

The following examples install into $HARVEST HOME/gatherers by default (see Section 3 (In-
stalling the Harvest Software)).

The Harvest distribution contains several examples of how to configure, customize, and run Gather-
ers. This section will walk you through several example Gatherers. The goal is to give you a sense of
what you can do with a Gatherer and how to do it. You needn’t work through all of the examples;
each is instructive in its own right.

To use the Gatherer examples, you need the Harvest binary directory in your path, and HAR-
VEST HOME defined. For example:

% setenv HARVEST_HOME /usr/local/harvest
% set path = ($HARVEST_HOME/bin $path)

8.1 Example 1 - A simple Gatherer

This example is a simple Gatherer that uses the default customizations. The only work that the
user does to configure this Gatherer is to specify the list of URLSs from which to gather (see Section
4 (The Gatherer)).

To run this example, type:

% cd $HARVEST_HOME/gatherers/example-1
% ./RunGatherer

To view the configuration file for this Gatherer, look at example-1.cf. The first few lines are variables
that specify some local information about the Gatherer (see Section 4.7.1 (Setting variables in the
Gatherer configuration file)). For example, each content summary will contain the name of the
Gatherer (Gatherer-Name) that generated it. The port number (Gatherer-Port) that will be
used to export the indexing information, as is the directory that contains the Gatherer (Top-
Directory). Notice that there is one RootNode URL and one LeafNode URL.

After the Gatherer has finished, it will start up the Gatherer daemon which will export the content
summaries. To view the content summaries, type:

% gather localhost 9111 | more

The following SOIF object should look similar to those that this Gatherer generates.

79

80 Chapter 8. Gatherer Examples

QFILE { http://harvest.cs.colorado.edu/ schwartz/IRTF.html

Time-to-Live{7}: 9676800
Last-Modification-Time{1}: 0
Refresh-Rate{7}: 2419200
Gatherer-Name{25}: Example Gatherer Number 1
Gatherer-Host{22}: powell.cs.colorado.edu
Gatherer-Version{3}: 0.4

Update-Time{9}: 781478043

Type{4}: HTML

File-Size{4}: 2099

MD5{32}: c2fa35fd44a47634£39086652e879170
Partial-Text{151}: research problems

Mic Bowman
Peter Danzig
Udi Manber
Michael Schwartz
Darren Hardy
talk

talk

Harvest

talk

Advanced

Research Projects Agency

URL-References{628}:
ftp://ftp.cs.colorado.edu/pub/cs/techreports/schwartz/RD.ResearchProblems.Jour.ps.Z
ftp://grand.central.org/afs/transarc.com/public/mic/html/Bio.html
http://excalibur.usc.edu/people/danzig.html
http://glimpse.cs.arizona.edu:1994/udi.html
http://harvest.cs.colorado.edu/~schwartz/Home.html
http://harvest.cs.colorado.edu/ hardy/Home.html
ftp://ftp.cs.colorado.edu/pub/cs/misc/schwartz/HPCC94.S1lides.ps.Z
ftp://ftp.cs.colorado.edu/pub/cs/misc/schwartz/HPC94.Slides.ps.Z
http://harvest.cs.colorado.edu/harvest/Home.html
ftp://ftp.cs.colorado.edu/pub/cs/misc/schwartz/IETF.Jul94.S1lides.ps.Z
http://ftp.arpa.mil/ResearchAreas/NETS/Internet.html

Title{84}: IRTF Research Group on Resource Discovery

IRTF Research Group on Resource Discovery

Keywords{121}: advanced agency bowman danzig darren hardy harvest manber mic

michael peter problems projects research schwartz talk udi

Notice that although the Gatherer configuration file lists only 2 URLSs (one in the RootNode section
and one in the LeafNode section), there are more than 2 content summaries in the Gatherer’s
database. The Gatherer expanded the RootNode URL into dozens of LeafNode URLs by recursively
extracting the links from the HTML file at the RootNode http://harvest.cs.colorado.edu/. Then,
for each LeafNode given to the Gatherer, it generated a content summary for it as in the above
example summary for http://harvest.cs.colorado.edu/ "schwartz/IRTF.html.

The HTML summarizer will extract structured information about the Author and Title of the file.
It will also extract any URL links into the URL-References attribute, and any anchor tags into the
Partial-Text attribute. Other information about the HTML file such as its MD5 (see RFC1821) and

8.2. Example 2 - Incorporating manually generated information 81

its size (File-Size) in bytes are also added to the content summary.

8.2 Example 2 - Incorporating manually generated informa-
tion

The Gatherer is able to “explode” a resource into a stream of content summaries. This is useful
for files that contain manually-generated information that may describe one or more resources, or
for building a gateway between various structured formats and SOIF (see Section 7 (The Summary
Object Interchange Format (SOIF))).

This example demonstrates an exploder for the Linux Software Map (LSM) format. LSM files
contain structured information (like the author, location, etc.) about software available for the
Linux operating system.

To run this example, type:

% cd $HARVEST_HOME/gatherers/example-2
% ./RunGatherer

To view the configuration file for this Gatherer, look at example-2.cf. Notice that the Gatherer
has its own Lib-Directory (see Section 4.7.1 (Setting variables in the Gatherer configuration file)
for help on writing configuration files). The library directory contains the typing and candidate
selection customizations for Essence. In this example, we’ve only customized the candidate selection
step. lib/stoplist.cf defines the types that Essence should not index. This example uses an empty
stoplist.cf file to direct Essence to index all files.

The Gatherer retrieves each of the LeafNode URLs, which are all Linux Software Map files from
the Linux FTP archive tsz-11.mit.edu. The Gatherer recognizes that a “lsm” file is LSM type
because of the naming heuristic present in lib/byname.cf. The LSM type is a “nested” type as
specified in the Essence source code (src/gatherer/essence/unnest.c). Exploder programs (named
TypeName.unnest) are run on nested types rather than the usual summarizers. The LSM.unnest
program is the standard exploder program that takes an LSM file and generates one or more cor-
responding SOIF objects. When the Gatherer finishes, it contains one or more corresponding SOIF
objects for the software described within each LSM file.

After the Gatherer has finished, it will start up the Gatherer daemon which will serve the content
summaries. To view the content summaries, type:

% gather localhost 9222 | more

Because tsz-11.mit.edu is a popular and heavily loaded archive, the Gatherer often won’t be able to
retrieve the LSM files. If you suspect that something went wrong, look in log.errors and log.gatherer
to try to determine the problem.

The following two SOIF objects were generated by this Gatherer. The first object is summarizes
the LSM file itself, and the second object summarizes the software described in the LSM file.

QFILE { ftp://tsx-11.mit.edu/pub/linux/docs/linux-doc-project/man-pages-1.4.1lsm

Time-to-Live{7}: 9676800
Last-Modification-Time{9}: 781931042
Refresh-Rate{7}: 2419200

Gatherer-Name{25}: Example Gatherer Number 2

Gatherer-Host{22}: powell.cs.colorado.edu

82

Chapter 8. Gatherer Examples

Gatherer-Version{3}: 0.4

Type{3}: LSM

Update-Time{9}: 781931042

File-Size{3}: 848

MD5{32}: 67377£3ea214ab680892c82906081caf
}

QFILE { ftp://ftp.cs.unc.edu/pub/faith/linux/man-pages-1.4.tar.gz
Time-to-Live{7}: 9676800

Last-Modification-Time{9}: 781931042

Refresh-Rate{7}: 2419200

Gatherer-Name{25}: Example Gatherer Number 2
Gatherer-Host{22}: powell.cs.colorado.edu
Gatherer-Version{3}: 0.4

Update-Time{9}: 781931042

Type{16}: GNUCompressedTar

Title{48}: Section 2, 3, 4, 5, 7, and 9 man pages for Linux
Version{3}: 1.4

Description{124}: Man pages for Linux. Mostly section 2 is complete.

3 has over 200 man pages, but it still far from being finished.
Author{27}: Linux Documentation Project

AuthorEmail{11}: DOC channel

Maintainer{9}: Rik Faith

MaintEmail{16}: faith@cs.unc.edu

Site{45}: ftp.cs.unc.edu

sunsite.unc.edu

tsx-11.mit.edu

Path{94}: /pub/faith/linux
/pub/Linux/docs/linux-doc-project/man-pages
/pub/linux/docs/linux-doc-project

File{20}: man-pages-1.4.tar.gz

FileSize{4}: 170k

CopyPolicy{47}: Public Domain or otherwise freely distributable
Keywords{10}: man

pages

Entered{24}: Sun Sep 11 19:52:06 1994
EnteredBy{9}: Rik Faith
CheckedEmail{16}: faith@cs.unc.edu
}

Section

We’ve also built a Gatherer that explodes about a half-dozen index files from various PC archives

into more than 25,000 content summaries. Each of these index files contain hundreds of a one-line

descriptions about PC software distributions that are available via anonymous FTP.

8.3 Example 3 - Customizing type recognition and candidate

selection

This example demonstrates how to customize the type recognition and candidate selection steps in
the Gatherer (see Section 4.5.3 (Customizing the type recognition, candidate selection, presentation
unnesting, and summarizing steps)). This Gatherer recognizes World Wide Web home pages, and

is configured only to collect indexing information from these home pages.

8.4. Example 4 - Customizing type recognition and summarizing 83

To run this example, type:

% cd $HARVEST_HOME/gatherers/example-3
% ./RunGatherer

To view the configuration file for this Gatherer, look at ezample-3.cf. As in Section 8.2 (Example 2),
this Gatherer has its own library directory that contains a customization for Essence. Since we’re
only interested in indexing home pages, we need only define the heuristics for recognizing home
pages. As shown below, we can use URL naming heuristics to define a home page in lib/byurl.cf .
We've also added a default Unknown type to make candidate selection easier in this file.

HomeHTML “http:.*/$

HomeHTML “http:.*[hH] ome\.html$
HomeHTML “http:.*[hH]ome [pP]lage\.html$
HomeHTML “http:.*[wWlelcome\.html$
HomeHTML “http:.*/index\.html$

The lib/stoplist.cf configuration file contains a list of types not to index. In this example, Unknown
is the only type name listed in stoplist.configuration, so the Gatherer will only reject files of the
Unknown type. You can also recognize URLs by their filename (in byname.cf) or by their content
(in bycontent.cf and magic); although in this example, we don’t need to use those mechanisms. The
default HomeHTML . sum summarizer summarizes each HomeHTML file.

After the Gatherer has finished, it will start up the Gatherer daemon which will serve the content
summaries. You’ll notice that only content summaries for HomeHTML files are present. To view
the content summaries, type:

% gather localhost 9333 | more

8.4 Example 4 - Customizing type recognition and summariz-
ing

This example demonstrates how to customize the type recognition and summarizing steps in the
Gatherer (see Section 4.5.3 (Customizing the type recognition, candidate selection, presentation
unnesting, and summarizing steps). This Gatherer recognizes two new file formats and summarizes
them appropriately.

To view the configuration file for this Gatherer, look at ezample-4.cf. As in the examples in 8.2
(Example 2) and 8.3 (Example 3), this Gatherer has its own library directory that contains the con-
figuration files for Essence. The Essence configuration files are the same as the default customization,
except for lib/byname.cf which contains two customizations for the new file formats.

8.4.1 Using regular expressions to summarize a format

The first new format is the “ReferBibliographic” type which is the format that the refer program
uses to represent bibliography information. To recognize that a file is in this format, we’ll use
the convention that the filename ends in “.referbib”. So, we add that naming heuristic as a type
recognition customization. Naming heuristics are represented as a regular expression against the
filename in the lib/byname.cf file:

ReferBibliographic ~.*\.referbib$

84 Chapter 8. Gatherer Examples

Now, to write a summarizer for this type, we’ll need a sample ReferBibliographic file:

%A A. S. Tanenbaum

%T Computer Networks

%I Prentice Hall

%C Englewood Cliffs, NJ
%D 1988

Essence summarizers extract structured information from files. One way to write a summarizer is
by using regular expressions to define the extractions. For each type of information that you want to
extract from a file, add the regular expression that will match lines in that file to lib/quick-sum.cf .
For example, the following regular expressions in lib/quick-sum.cf will extract the author, title, date,
and other information from ReferBibliographic files:

ReferBibliographic Author “HAL \t]+.x$
ReferBibliographic City “WCL \t]+.x$
ReferBibliographic Date ~WDL \t]+.x$
ReferBibliographic Editor “KEL \t]+.x$
ReferBibliographic Comments ~RHL \t]+.*$
ReferBibliographic Issuer “HWIL \t]+.x$
ReferBibliographic Journal “RIL \t]+.x$
ReferBibliographic Keywords WKL \t]+.x$
ReferBibliographic Label “ULL \t1+. 8
ReferBibliographic Number ~UNL \t]+.x$
ReferBibliographic Comments ~H0LC \t]+.x$
ReferBibliographic Page-Number ~%PL \t]l+.*$
ReferBibliographic Unpublished-Info ~%RL[\t]+.*$
ReferBibliographic Series-Title ~“%SL[\t]+.*$
ReferBibliographic Title ~ATE \t]+.%$
ReferBibliographic Volume “UVE \t]+. *x$
ReferBibliographic Abstract ~4XL \t]+.*$

The first field in lib/quick-sum.cf is the name of the type. The second field is the Attribute under
which to extract the information on lines that match the regular expression in the third field.

8.4.2 Using programs to summarize a format

The second new file format is the “Abstract” type, which is a file that contains only the text of a
paper abstract (a format that is common in technical report FTP archives). To recognize that a
file is written in this format, we’ll use the naming convention that the filename for “Abstract” files
ends in “.abs”. So, we add that type recognition customization to the lib/byname.cf file as a regular
expression:

Abstract ~.*\.abs$

Another way to write a summarizer is to write a program or script that takes a filename as the first
argument on the command line, extracts the structured information, then outputs the results as a
list of SOIF attribute-value pairs.

Summarizer programs are named TypeName.sum, so we call our new summarizer Abstract.sum.
Remember to place the summarizer program in a directory that is in your path so that Gatherer
can run it. You'll see below that Abstract.sum is a Bourne shell script that takes the first 50 lines
of the file, wraps it as the “Abstract” attribute, and outputs it as a SOIF attribute-value pair.

8.5. Example 5 - Using RootNode filters 85

#!/bin/sh

#

Usage: Abstract.sum filename
#

head -50 "$1" | wrapit "Abstract"

8.4.3 Running the example

To run this example, type:

% cd $HARVEST_HOME/gatherers/example-4
% ./RunGatherer

After the Gatherer has finished, it will start up the Gatherer daemon which will serve the content
summaries. To view the content summaries, type:

% gather localhost 9444 | more

8.5 Example 5 - Using RootNode filters

This example demonstrates how to use RootNode filters to customize the candidate selection in
the Gatherer (see Section 4.3.1 (RootNode filters)). Only items that pass RootNode filters will be
retrieved across the network (see Section 4.3.4 (Gatherer enumeration vs. candidate selection)).

To run this example, type:

% cd $HARVEST_HOME/gatherers/example-5
% ./RunGatherer

After the Gatherer has finished, it will start up the Gatherer daemon which will serve the content
summaries. To view the content summaries, type:

% gather localhost 9555 | more

86

Chapter 8. Gatherer Examples

Chapter 9

History of Harvest

9.1 History of Harvest

e 1996-01-31: Harvest 1.4pl2 was the last official release by Darren R. Hardy, Michael F.
Schwartz, and Duane Wessels.

e 1997-04-21: Harvest 1.5 was released by Simon Wilkinson.

e 1998-06-12: Harvest 1.5.20 was released by Simon Wilkinson.

e 1999-05-26: Harvest-MathNet100.tar.gz released.

e 2000-01-14: harvest-modified-by-RL-Stajsic.tar.gz released.

e 2000-02-07: Harvest 1.6.1 was released by Kang-Jin Lee in cooperation with Simon Wilkinson.

e 2002-10-25: Harvest 1.8.0 was released by Harald Weinreich and Kang-Jin Lee.

9.2 History of Harvest User’s Manual

e 1996-01-31: Harvest User’s Manual for Harvest 1.4.pl2 was written by Darren R. Hardy,
Michael F. Schwartz, and Duane Wessels. The document was written in LaTeX. The HTML
(converted with LaTeX2HTML) and the Postscript versions were made available to the public.

e 2001-04-27: The HTML version of this document was updated and bundled with the Harvest
distribution by Kang-Jin Lee. Notable changes were removing the sections about Harvest
Object Cache and the Replicator which are not part of Harvest any more.

e 2002-01-28: This Harvest User’s Manual was converted to linuxdoc. It is now available in
PostScript, PDF, text and HTML format.

87

